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ABSTRACT OF THE DISSERTATION

Robotic Mobility Rehabilitation System Using Virtual

Reality

by RARES FLORIN BOIAN

Dissertation Director: Professor Grigore C. Burdea

The application of robotic technology and virtual reality in rehabilitation is an emerging

research field. The motivation behind the research efforts is the large patient popula-

tions in need for better rehabilitation therapy at lower costs. Walking impairments pose

serious problems to the disabled when clearing a curb, walking on an uneven sidewalk

surface, or crossing a street.

A common feature of the existing gait rehabilitation systems is the treadmill, which

provides the patient with means to exercise walking on a smooth and continuous sur-

face. However, in real life, the patient needs to negotiate uneven surfaces with various

properties. The main subject of this thesis is the development of a walking simulator

that can render a larger variety of walking surfaces. The simulator uses two compact

Stewart platform robots attached to the patient’s feet. The servo loop software con-

trols simultaneously the positions and forces of each robot. The two robots simulate

the functioning of a treadmill by moving one foot backward while the patient moves

the other one forward. Using the 6DOF provided by each Stewart platform, the system

can render uneven walking surfaces, and various surface conditions such as mud, ice, or

gravel. A VR simulation of crossing a street has been developed and integrated with

the simulator. The virtual environment supports several configurations to adjust the

exercise difficulty to the patient’s abilities, as well as provide him with a realistic ex-

ercising environment. The simulation configurable variables include shape and height
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of the sidewalk edge, street surface condition, scene visibility, and vehicle behavior.

The sensor readings output by the controller during the therapy are stored on the PC

running the VR simulation and transmitted to an Oracle database for later remote

consultation and evaluation.

The simulator is part of a distributed virtual reality rehabilitation framework. Sev-

eral prototype rehabilitation systems using robotics and VR have been integrated in

a common framework that supports telerehabilitation and telemonitoring. The frame-

work consists of a network of servers. It provides the remote therapist with a simplified

version of the VR exercise executed by the patient. The VR applications displayed to

the patient and therapist are synchronized in real–time over the network. The therapist

controls the parameters of the patient’s exercise, through the interface provided by the

simplified VR simulation. The rehabilitation framework also provides the integrated

systems with a unified approach to data storage in an Oracle database. A web por-

tal for the mobility simulator is currently under development to allow the therapist to

evaluate the patient’s progress using the clinical data collected during therapy.
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Chapter 1

Introduction

1.1 Motivation

The application of robotic technology and virtual reality in rehabilitation is an emerging

research field. The motivation behind the research efforts is the large patient popula-

tions in need for better therapy. One such population is that of individuals post-stroke.

According to the American Hearth Association, there are approximately 3 million stroke

survivors in the United States who live with disabilities [4]. The ability to walk is one

of several functions affected by stroke. Immediately after the stroke only 37% of the

survivors are able to walk [63]. Of the patients with initial paralysis only 21% regain

walking function [115]. Walking impairments pose serious problems to the recovering

stroke survivors. Common daily activities such as clearing a curb, walking on an uneven

sidewalk surface, or crossing a street in time become difficult due to lack of control over

the feet and the auditory and visual interference of the surrounding environment [13].

Wade et al. [114] showed that training could reduce disabilities provoked by stroke

even if the rehabilitation takes place in the chronic phase (9 months or more after

the date of the stroke). In a literature review, Kwakkel showed that a small, but

statistically significant, treatment effect was due to the intensity of the training pro-

cedures [67]. Longer and more intense training regimen proved to be more effective

toward the recovery.

Although the research results say that prolonged and intensive rehabilitation is

needed to treat patients post–stroke, the real life situation is different for most patients.

Immediately after stroke, a patient goes through an intensive rehabilitation program

that lasts approximately 40 days [59]. After that, the patient is discharged from the

hospital and the rehab continues in outpatient sessions of half an hour once or twice a

day. Eventually this is decreased to once or twice a week. In our view, the number of

people still suffering of the post–stroke effects shows that the amount of conventional
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rehabilitation provided by hospitals and clinics is not sufficient. Possible reasons for

this are the high cost of the traditional therapy and limits placed in reimbursements.

Following this line of thought, researchers have focused on different approaches to

provide rehabilitation for those in need at lower costs. Studies have shown that virtual

environments (VE) are a technology suitable for rehabilitation therapy due to their

inherent ability of simulating real–life tasks [49, 48] while minimizing the hazardous

aspects of such activities. Besides helping to engage the patient in life–like activities

at low cost and in safe conditions, virtual environments provide the means to better

measure and evaluate the patient’s performance. Data can be collected from the sen-

sors attached to the patient’s body and evaluated in real–time, providing performance

feedback. In addition, the data can be stored transparently in web accessible databases

for future evaluation [100, 98].

VEs can provide a patient safe and more controlled rehabilitation means. They can

also solve a major drawback of the repetitive training required in post–stroke rehab:

boredom. In conventional therapy, the patients usually get bored of doing the same

exercises repeatedly, which leads to lower motivational levels. A lack of motivation

toward the training program decreases the efficiency of the therapy. In virtual reality,

every exercise can be wrapped in one or more game–like simulations that motivate the

patient by making less obvious the monotonous aspect of the training [100, 58, 59].

Virtual worlds are characterized by a large degree of flexibility that can be used to

adjust the exercises to the patient’s needs.

VR–based rehabilitation can also be done remotely. The current advances in tech-

nology produced smaller and cheaper devices that can be deployed in a home. Not all

the existing rehabilitation devices can be deployed at the patient home, in which case

the rehabilitation can be done at a rural clinic while being monitored by a city expert.

1.2 Approach

Most of the gait rehabilitation systems currently used for therapy rely on treadmills.

Such systems are the Biodex Gait Trainer, the Robomedica system, and the Lokomat r©
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system. Walking on a treadmill is similar to walking on a smooth floor indoors. In real

life, a stroke survivor has to walk on more complex surfaces indoors and outdoors. While

walking, a patient may have to negotiate stairs, uneven terrain, slippery surfaces, or

mud. Treadmills are unsuitable for exercising walking in such conditions, because they

lack the flexibility to render complex surfaces. The focus of this thesis is the design

and development of a robotic system for gait rehabilitation (see Figure 1.1) that can

render such surfaces.

A second goal is the creation of a telerehabilitation framework to integrate several

existing VR–based rehabilitation systems built in the Human–Machine Interface Lab at

Rutgers. The framework provides a remote therapist using one of the systems integrated

with tools to monitor the activity of the patient and adjust the rehabilitation parameters

on–line. It also provides unified data collection and storage routines, an Oracle database

for the clinical data, and a web-based portal for data access.

1.3 Mobility Simulator

The setup of the mobility simulator is shown in Figure 1.1. It consists of two Rutgers

Mega–Ankle (RMA) 6DOF robots, an unweighing frame, and a large screen display.

The two RMA robots are bolted to a wood platform on the floor so they do not slip

during exercises. On the same platform, the Biodex unweighing frame is positioned

above the two RMA robots, the vertical beams of the frame being approximately aligned

with the platforms. The patient, suspended in the unweighing frame, has each foot

secured to the corresponding RMA. At approximately 1.5 meters in front of the patient,

the virtual reality exercise is rendered on the large projection screen display. The

two robots simulate walking in a way similar to the functioning of a treadmill: the

robot connected to the supporting foot slides backward while the robot attached to the

swinging foot follows the motion compensating for its own weight. Using the 6DOF

provided by the Stewart platform architecture of the RMA robots, the system can

render uneven walking surfaces, and various surface conditions such as mud, ice, or

gravel.
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Figure 1.1: Mobility simulator [13].

1.4 VR Rehabilitation Framework

The framework design is inspired from the system developed by Popescu [100] hand

rehabilitation. The architecture can be divided in four logical sites that map over

multiple different physical locations (Figure 1.2): rehabilitation site, monitoring server

site, data storage site, and monitoring site.

1.4.1 Rehabilitation Site

The rehabilitation site is the location where a patient goes through the therapy pro-

gram. The system components deployed here are sensing and haptic devices (i.e. the

mobility simulator, the ankle-in-sitting system, etc.), virtual reality exercises, graphics

workstation and audio/video capture instruments for remote communication. Using the

sensing and haptic hardware, the patient interacts with virtual reality exercises running

on the graphics workstation. The VR exercises are game–like simulations that engage
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Figure 1.2: Telerehabilitation framework sites.

the patient into winning the games’ challenges. In order to win the game, the patient

has to execute a variety of motions used in physical rehabilitation. In our opinion,

by mapping these procedures on games, the therapy becomes more engaging and the

patient is kept motivated throughout the entire course of the rehabilitation.

The system collects and evaluates the data output by the sensing devices used during

therapy. These data are evaluated in real–time and displayed on the computer screen

as real–time performance feedback to the patient. The raw and evaluated data are also

stored on the hard–drive for future evaluation by the therapist or physician.

The therapist overseeing the therapy can do that from a remote location. The

patient and the therapist are connected over the Internet through teleconferencing using

the microphone and video camera deployed at the rehabilitation and monitoring sites.

This separation between the patient and therapist has not been achieved for the mobility

simulator presented in this thesis. However, successful tests have been conducted for

the hand and ankle rehabilitation systems developed at Rutgers in collaboration with

the University of Medicine and Dentistry of New Jersey and the New Jersey Institute

for Science and Technology.
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1.4.2 Monitoring Server Site

Although teleconferencing could provide the therapist and patient with a way of inter-

acting audibly and visually, it cannot provide the therapist with real–time information

on the VR exercises progress. Such information would have to include everything that

the patient sees on the workstation screen. To make this information available to the

therapist, a distributed real–time monitoring service has been developed. The service

transfers the therapy exercise data from the rehabilitation site to the monitoring site.

To avoid overloading the graphical workstation, the therapist site does not connect

directly to the service running on the rehabilitation computer to retrieve the exercise

data. Instead, the rehab workstation sends the data in real–time to a server, which then

makes it available to the therapist site. The location of the monitoring server proved

to be critical in an environment consisting of heterogeneous network connections. To

avoid situations where the patient and the therapist are connected on the same network

but the server is on another (hence reducing the quality of service), multiple server sites

have been deployed. The data generated by the rehabilitation site is multicast to all the

server nodes involved. Thus, the remote monitoring application can choose an optimal

connection from the several possible options.

1.4.3 Data Storage Site

The data storage site is the location of central servers coordinating the distributed

rehabilitation system. This site consists of an Oracle database server, a web server

running the data access portal and the monitoring service main hub.

The Oracle database stores the clinical data collected at the rehabilitation site during

the therapy sessions. This database and the rehabilitation sites are synchronized daily.

The web data access portal provides the therapist and physician with the means of

analyzing the progress of the patient during therapy and the possibility of consulting

data at several levels of granularity.

The monitoring service hub is responsible for coordinating the network of server

sites multicasting the real–time patient data.



7

1.4.4 Monitoring Site

The monitoring site is the location where the therapist supervises the patient’s activity.

Physically, it can be any network–connected computer. Using the monitoring applica-

tion presents the therapist with a simplified version of the exercise executed by the

patient. The application window displays all the parameters involved in the therapy

session along with the animated 3D simulation of the patient’s activities. Work done

by Lewis and Boian has added the ability to change the exercise parameters remotely.

Thus, the therapist can preconfigured or adjust the simulation variables during the

rehabilitation session without being present at the patient’s location [70].

1.5 Contributions

The work presented in this thesis can be grouped in four parts: design and development

of a robotic locomotion simulator, development of a virtual reality simulation integrated

with the simulator, design and development of a distributed monitoring service for

telerehabilitation support, and the development of an Oracle database and web portal

for storage and access of clinical data. This thesis makes contributions in the following

fields: haptic devices, virtual environments, haptic modeling, virtual rehabilitation, and

telerehabilitation. The list below summarizes these contributions by field.

1. Haptic devices

• Dual Stewart platform mobility simulator;

• Design and control of the robotic devices to sustain the weight of a person

during walking.

2. Robotic control

• Simultaneous dual robot control in time–sharing control loops.

3. Virtual environments:

• Street crossing simulation integrated with the mobility simulator for reha-

bilitation of patients post–stroke. The simulation integrates visual, haptic
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and auditory feedback to provide the patient with a realistic experience.

4. Haptic modeling :

• Simulation of a person walking using two Rutgers Mega–Ankle robots. Def-

inition and implementation of novel haptic materials and surface patches

used for modeling the properties of the virtual walking surface.

5. Telerehabilitation:

• Distributed telerehabilitation framework, including web–based data access.

The framework has been designed to support the development of PC–based

telerehabilitation exercises by providing the infrastructure necessary for data

collection, storage, evaluation and streaming.

1.6 Thesis Outline

The material presented in this thesis is structured in eleven chapters. Chapters 3, 4, 5, 6, 7,

and 8 discuss the mobility simulator. Chapters 9 and 10 present the design and devel-

opment of the VR rehabilitation framework.

Chapter 2 gives an overview of the research state of the art in applying robotics and

virtual reality in rehabilitation.

Chapter 3 presents the hardware components of the rehabilitation system developed

as part of the thesis research. It provides an overview of the hardware as well as in

depth descriptions of the custom made parts and the design decisions behind them.

Chapter 4 studies the kinematics and dynamics of the Rutgers Mega–Ankle (RMA)

Stewart platform. The workspace, maximum output force and torque as well as me-

chanical bandwidth and dual platform interference issues are discussed.

Chapter 5 presents the RMA robots’ servo control. The approaches and problems

raised by the pressure, position and force control are also discussed. An overview of

the software is also given with details about the implementation of the time–sharing

between the tasks controlling each platform.
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Chapter 6 studies the task level control of the mobility simulator. The implemen-

tation of walking and the haptic effects designed to support the simulation of various

walking surface properties are described.

Chapter 7 presents the virtual reality exercise developed as part of the system. The

exercise consists of a street crossing simulation integrated with the mobility simulator.

Chapter 8 presents preliminary results from tests of the system on healthy individ-

uals.

Chapter 9 describes the real–time remote monitoring service developed to provide

the therapist with access to and control over the therapy session without being at the

same geographical location with the patient.

Chapter 10 presents the data storage and access part of the system. The database

design, along with performance and security issues are also discussed. The web–based

portal is also described, with details about the graphical user interface (GUI) and the

graph generation from the data stored during the therapy.

Conclusions and future work directions are given in the Chapter 11.
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Chapter 2

Robotics and Virtual Reality in Rehabilitation

The system presented in this thesis system is multidisciplinary integrating virtual re-

ality, rehabilitation, telerehabilitation, robotic devices, and web–accessible databases.

Some of the significant work and results in these fields are presented in the next sections.

2.1 VR–based Rehabilitation

Virtual reality can be used in rehabilitation process as a complement to the conven-

tional therapy or as a stand–alone intervention approach that replaces the conventional

therapy. The former case is known as VR–augmented rehabilitation and the latter as

VR-based rehabilitation [25]. The mobility simulator system presented here belongs

to the VR-based rehabilitation category. While our system targets rehabilitation of

gait primarily in patients post–stroke, other research projects address rehabilitation of

function in hand, arm, ankle, etc. Several such state of the art systems are presented

below.

The system presented in this thesis is an extension of the work done by Girone et al.

in 1999 at Rutgers University [42]. Girone and Bouzit built the first prototype of the

air actuated Stewart platform called the “Rutgers Ankle”. Using one platform, Girone

developed a VR exercise for ankle diagnosis of orthopedic patients. The simulation

displayed a virtual leg mapped to the position and orientation of the patient’s leg. The

motions of the virtual model were augmented so that they provided a clear visual feed-

back when the patient. The ankle orientation/torque data was collected in real–time

and stored in a local database. Proof of concept patient trials were run on this system

with encouraging results [43, 44]. Using the same setup Latonio and Deutsch developed

an exercise that was more engaging and better addressed a larger number of motions

targeted by the therapy. The patient used the Stewart platform as a joystick to fly a
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virtual airplane through hoops using his ankle. The hoops were scattered in the sky fol-

lowing a pattern chosen by the therapist (Figure B.5). The system was applied to both

orthopedic and post–stroke patients. The results of the trials conducted by Deutsch

in Summer 2000 in a clinic showed improvement in both types of patients [35, 36].

The systems used by Girone and Latonio had the rehabilitation functionality reduced

to the patient exercising in sitting one foot at a time and required the presence of a

therapist at the rehabilitation site. The system did not support multiple simultaneous

rehabilitation sessions. In addition, no remote data access or remote patient monitoring

capabilities were provided.

Popescu developed a similar system that addressed the rehabilitation of patients

with hand injury [100]. The system used the Rutgers Master II haptic glove [99, 45]

developed in the Human–Machine Interface Lab at Rutgers University. VR exercises

were developed to simulate the use of a DigiKey device, squeezing of a rubber ball,

or sticking pegs in a board with holes (PegBoard) [98]. The architecture designed by

Popescu served as a base for Girone’s and Latonio’s systems. All these three systems

allowed one to one patient/therapist interaction and classical client–server remote data

access. The rehabilitation site was in California (Stanford University) or in New Jersey

with data being stored locally and accessed remotely from Rutgers.

In 2000, Jack and Boian adapted Popescu’s idea and implemented a system to be

used by patients post–stroke [78, 3]. The system involved the use of two sensing gloves:

the CyberGlove by Immersion technologies Inc. and the Rutgers Master II glove [45,

26, 25, 23, 22] developed at Rutgers. The initial version of the system was a proof

of concept implementation that targeted mainly high quality rehabilitation exercises

and on–line data access. The system did not provide real–time remote monitoring of

the patient, concurrent patient rehabilitation sessions, or web–based data access. In

2001, Boian redesigned the system for concurrent access and implemented real–time

web–based monitoring of the patients activities. The second–generation hand exercises

are presented in Appendix B. The system has gone through one month of patient trials

and the results were published at the MMVR2002 conference [12]. A significant part of

this system’s architecture will be used in the system proposed here.
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Hogan and Krebs, at MIT, developed a robotic arm used for post–stroke rehabilita-

tion [65]. The patient was interacting with a simplified video game by using the robotic

arm. The goal was to have the patient move the robot end–effector according to the

game. If the patient could not execute a task, the robotic arm would help by guiding

the patient’s hand.

In 2000, Riva integrated a commercially available gait–inducing exoskeleton in a

virtual environment. The system was used for rehabilitating patients with spinal chord

injuries. The patient wearing an HMD had to walk in a virtual environment simulating

a stroll in the mountains [103].

More recently, Jaffe developed a system that uses virtual reality to improve walking

in stroke patients. Although the goal of this project is identical with ours, the two

systems are fundamentally different. Jaffe used [60] a treadmill on which the patients

were walking wearing a head mounted display. The patient had to walk and avoid the

virtual obstacles generated by the computer on their path. The treadmill limits the

simulation to flat terrain and no special surfaces (ice, mud, etc)

Brown et al. [20] developed virtual environments for travel training. Their system

simulates a city featuring a cafe, a house, a supermarket, and traffic on the street. The

user input is done through the keyboard, the goal of the system being only the visual

navigation.

2.2 VR Telerehabilitation

According to the Centers for Medicare and Medicaid Services [39], telemedicine is de-

fined as

... the use of communication equipment to link health care practition-

ers and patients in different locations. This technology is used by health

care providers for many reasons, including increased cost efficiency, reduced

transportation expenses, improved patient access to specialists and men-

tal health providers, improved quality of care, and better communication

among providers.
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Within the broad definition of telemedicine, telerehabilitation is a branch concerned

with providing rehabilitation therapy without having the patients and therapists at

same geographical location. Several state of the art telerehabilitation research projects

are discussed below.

Among the systems presented in the previous section, those developed by Girone,

Latonio and Jack implemented no telerehabilitation utilities. The presence of a thera-

pist in the same room with the patient was necessary.

The system developed by Popescu and Boian presented tools that allowed the

therapist to interact remotely with the patient through teleconferencing, remote web–

monitoring and remote haptic interaction [97].

In 2000, Grimes et al. developed a web–based hand evaluation system. The diag-

nostic device is a dynamometer connected to a PC host. The data collected from the

dynamometer is displayed at the clinic site to the therapist. A NetMeeting teleconfer-

ence session is open between the therapist and the patient during the evaluation period.

The patient interacts with the therapist using a microphone and a camera [46].

In 1998, Pfeifer et al. developed a client/server architecture for remote patient

monitoring [95]. The system was used to measure patient’s vital signs once a day. The

data collected was stored in a database located at the clinic. The main idea was that

active involvement of the patient in the therapy would translate into better outcomes of

the therapy. Hence, the patient was in charge of manipulating the monitoring system

by interacting with the computer through a touch sensitive screen. Pfeifer’s system

featured no VR components.

In 2003, Holden et al. [50] developed a rehabilitation system for patients post–stroke

involving a one to one remote interaction metaphor between a patient at home and a

therapist at the clinic. While communicating with the therapist through teleconfer-

encing, the patient had to move their arms following the paths presented by the VR

simulation. Magnetic sensors were used to capture the patient’s motions and the data

was stored transparently in a database. Their system was deployed and tested by Piron

et al. in Italy [96].
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2.3 Locomotion Simulators

Locomotion simulators, which attempt to simulate the sensations of walking, have been

the focus of many researchers due to their applicability in simulating real–life tasks. The

existing gait simulators have been classified by Hollerbach [107] into three categories

based on the design: walk–in–place devices, foot platforms and treadmills.

2.3.1 Walk–in–Place Devices

The general idea behind these devices is to have the user walking in place without

advancing while the motions are tracked by sensors. From the user’s motion, the

driving workstation computes the direction and speed of the virtual avatar and changes

the view in the virtual environment. The haptic feedback of these systems is reduced

to the floor contact, which in most cases is a flat surface.

One such is system the Gaiter developed by Templeman et al [112]. Magnetic

trackers are attached to the user’s thighs, waist, head and hand. The direction and

speed of motion are computed from the user’s knee movements. The orientation of the

body is measured by the waist sensors. Force sensors are placed on the user’s footpads

to help detect the steps more accurately.

A similar approach by Parsons et al. [89] used magnetic trackers attached to the

ankles. A step was generated if the ankle was raised above a threshold.

Iwata tried to simulate walking by using low–friction shoes [57, 55]. The user was

attached to a frame by a belt around the waist to counteract the forward motion and

to improve safety. A toe pad was used to break the sliding.

In 2002, Bouguilla et al. developed a turntable for walking simulation in large–

scale virtual environments [17]. The user stepped in place on a turntable platform

while facing a large screen displaying the virtual environment. Pressure sensors were

mounted on the platform to detect the user’s position during the simulation. The

turntable was actuated and rotated to cancel out the user’s change of direction keeping

him/her facing the screen.



15

2.3.2 Treadmills

A special treadmill with controllable tilt called the Sarcos Treadport (Figure 2.1(a))

was developed at the University of Utah. The novelty of this treadmill versus the

conventional ones is the possibility to simulate steeper up–hill walking by increasing

the tilt beyond the approximately 5 degrees in conventional treadmills. Using a stick

attached to the user’s back, the Treadport can also be used to simulate inertial forces [27,

52].

Iwata also approached the idea of using a treadmill for walking simulation. His

research focused on creating a treadmill that allowed the user to walk in any direc-

tion [54]. The Torus Treadmill (Figure 2.1(b)) is an assembly of ten conveyer belts that

can move in any direction. The speed of motion is limited to about 0.5 m/sec, which

corresponds to slow walking.

Miyasato developed another treadmill–like locomotion simulator called ATR–GSS

(Figure 2.1(c)). A regular treadmill was modified with controllable panels that can be

raised or lowered to simulate uneven surfaces. After the user steps on the raised/lowered

panel, as the user’s foot is moved backward by the belt, the panel is brought back to

its original position [81, 85]. Stair–like surfaces are very appropriate for rendering on

this system.

Wang et al. at Arizona State University [116] developed a simple but interesting

omni–directional treadmill using a low friction cloth on top of a rigid board. Casters

with high friction wheels are placed on top of the cloth pressing it against the board.

By rotating the casters, the system controls the motion of the cloth moving it in the

opposite direction of the user’s motion, essentially pulling the carpet under the user’s

feet.

2.3.3 Foot Platforms

At the University of Utah, Hollerbach and Christensen designed the Sarcos Biport [107].

The device is made of two hydraulic 3DOF platforms attached to the user’s feet. When

the user’s foot is swinging forward taking the next step, the platforms are controlled to
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(a) Sarcos Treadport (b) Torus Treadmill

(c) ATR GSS

Figure 2.1: Treadmill–based walking simulators [51].

compensate for their own weight. The virtual environment is displayed on a wall screen

in front of the user (Figure 2.2(a)).

In Japan, Iwata developed two generations of foot platforms named GaitMaster and

GaitMaster2 [56, 87]. As can be seen in Figure 2.2(b) the GaitMaster is an assembly

of two 3DOF platforms mounted on a turntable. The two bases follow the motion

of the user’s feet using the input provided by trackers mounted on the user’s legs,

hence simulating walking on an infinite floor. The second–generation device, GaitMas-

ter2 (Figure 2.2(c)), is made of two 2DOF motion platforms (one for each foot). The

platforms are actuated by motors and chains [87]. As in the initial GaitMaster, the
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platforms follow the users foot using magnetic trackers.

(a) Sarcos Biport (b) GaitMaster (c) GaitMaster2

Figure 2.2: Foot platforms [51].

The foot–platforms systems presented here are superior to treadmills in that uneven

terrain can be simulated. However, they are extremely bulky and complex, which makes

them difficult to install outside the lab.

2.3.4 Other Walking Simulators

A very realistic simulation of uneven terrain was created by Noma through the de-

velopment of the Terrain Surface Simulator ALF [85]. The simulator is a rectangular

surface made of many small tiltable plates that can be controlled in real–time. By

tilting these small plates, the walking surface can be set in a large variety of shapes.

The device is not a treadmill so the user can only walk around in the actuated area

(see Figure 2.3(a)).

A novel approach that combines walking simulation with immersive VR is the en-

tertainment sphere manufactured by VR Systems UK (North Baddesley, Southampton,

UK), shown in Figure 2.3(b). The concept shows the user inside a movable sphere that

rotates under his/her footsteps. Although infinite in size, the walking surface is always

smooth, and depending on the diameter of the sphere is more or less curved. Larger

spheres will yield results that are more realistic by reducing the unnatural curvature

of the surface. The virtual environment is displayed on the same sphere using outside
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projectors.

E–motek Inc. (Amsterdam, Netherlands) has developed the CAREN system, a

hydraulically actuated Stewart platform robot for simulating surfaces with any tilt

angle (see Figure 2.3(c)). The user stands on a 2–meter diameter board placed on top

of such a platform and can exercise balance while the platform changes its orientation

to match the virtual world scenario.

In 2003, Comeau et al. developed Laval University a gait rehabilitation system us-

ing CAREN [30]. They placed a treadmill on top of the platform to make the walking

surface infinite. The user’s steps are measured by magnetic trackers mounted on the

feet. To prevent undesired interference with the sensors, the treadmill is made exclu-

sively of non–magnetic materials. This device cannot simulate uneven terrain or stairs

but it is very appropriate for indoor walking simulations.

2.4 Rendering for Walking Simulations

The primary concern of a simulation of a user walking is to update of the visual, audio

and haptic devices according to the user’s motions. A second aspect that makes a

simulation more realistic is the walking terrain rendering. In the following sections, we

present some of the existing solutions to these issues.

2.4.1 Detecting User Motions

When the user is walking in the virtual environment using the simulator, the rendering

engine has to track his/her motions in order to update the viewpoint and the hardware

components. For example, if the user turns around, the scene has to move in the

opposite direction. In addition, the haptic devices have to adapt so that the user has

the turning feeling while still facing the display.

The systems presented in the previous sections use tracking approaches such as:

• Magnetic trackers attached to the user’s body [112];

• Optical trackers pointed at the user’s feet;
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(a) Terrain Surface Sim-
ulator ALF [84]

(b) Immersive sphere by VR Systems UK

(c) CAREN by E–Motek Inc.

Figure 2.3: Other walking simulators.

• Platforms attached to the user’s feet [107, 56, 87];

• Force/pressure sensors on the floor to detect the feet position [17];

• Rigid stick attached to the user’s back [27, 52].

Based on the sensor readings, the criteria for deciding whether the user changes the

direction was based on:

• Knee lateral movement;

• Foot orientation;
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• Body rotation/movement to a side.

2.4.2 Haptic Rendering

Change of direction: Haptic support for the user’s change of direction can be imple-

mented in a number of ways. In the case of the Gaiter [112], the user can turn around

on the floor and the only thing that needs to be updated is the view in the virtual world

displayed in the HMD. On the other hand, Bouguila’s system displays the environment

on a wall screen, which requires a way to keep the user facing it regardless of the change

of direction. This was solved by rotating the turntable to cancel out the user’s change

in orientation. In both these cases, the user needs to signal the turn through a special

foot gesture.

Treadmills, such as the Sarcos Treadport, can implement turning support by having

a turntable under the treadmill that rotates as the user changes direction. This approach

was explored by Hollerbach et al. in the design of the Sarcos Uniport, and by Comeau

et al. using the CAREN system. The Torus Treadmill developed by Iwata solves this

problem at the cost of motion speed, user workspace, and system complexity.

Similar to the treadmills, the foot platforms cannot usually support turning by

themselves. A solution for this problem was given by Iwata with the GaitMaster. The

two 3DOF platforms of the GaitMaster are mounted on a turntable, which rotates

following the user’s motion.

Slope: The Sarcos Treadport renders a slope in a very natural way by tilting the

treadmill to a certain angle. In addition, the tether stick attached to the user’s back can

apply inertial forces making the simulation even more realistic. The CAREN system

solves this issue just as naturally as the Treadport by using the 6DOF of the Stewart

platform.

The ATR–GSS developed by Miyasato solves the slope rendering problem with a

stair climbing approach. The plates under the treadmill’s belt are raised in front of the

user and, after contact with the foot, they start to lower as they are moved back.

Terrain shape and stiffness: Uneven terrain can be simulated with the ATR–GSS

just as easily as simulating stair climbing. The ATR–ALF [85] makes a more realistic
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rendering of uneven terrain by changing the shape of the walking surface.

Foot platforms are a suitable option for various terrains rendering because of their

inherent mobility. The Sarcos Biport can simulate bumps in the terrain by changing the

platforms’ elevation. Besides terrain shape, foot platforms allow rendering of terrain

stiffness (corresponding to mud or gravel) by changing the platform impedance.
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Chapter 3

Hardware Architecture

The mobility simulator employs two Rutgers Mega–Ankle robots, a electro–pneumatic

controller, an unweighing system (Biodex Co.), a graphics workstation, and a large

screen display to allow the patients exercise in standing 1.1.

The two RMA robots are connected electronically and pneumatically to the haptic

control interface (HCI) (not shown in Figure 1.1). The HCI runs the servo controller

software, which regulates the air pressure and the position of each double–acting pneu-

matic cylinder actuating the RMAs. The HCI is connected to the graphics workstation

over the serial port, and receives from the VR simulation commands regarding the hap-

tic feedback to the user’s feet. The HCI also returns the sensors readings of each RMA

platform to the VR simulation.

The graphics workstation is currently a dual processor computer running the VR

therapy exercises. Based on the input received from the HCI, it updates the virtual

environment and displays the real–time performance evaluation of the patient’s activity.

3.1 Rutgers Mega–Ankle Stewart Platform

The Rutgers Mega–Ankle is a compact hexapod custom–made robotic device (Fig-

ure 3.1(b)) commonly called “Stewart platform” after its inventor [110]. The robot

consists of two plates (bases) interconnected by six pneumatic cylinders positioned in a

zigzag sequence. The large base is fixed (bolted to the floor) while the top plate is mo-

bile and can be moved and rotated in all directions by changing the individual position

of each of the six actuating cylinders. The main advantages of the Stewart platform

architecture are the good size–to–power ratio provided by these robots and their six

degrees of freedom. The platform was designed to have the user’s foot strapped into

the binding mounted on the mobile base. By controlling the air pressure in the pneu-

matic cylinders, the platform can apply 6DOF forces and torques to the user’s foot and
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control the user’s foot position. The forces and torques at the mobile platform base are

directly measured by a 6DOF force sensor (JR3 CO.) mounted under the foot binding.

The position of the platform is computed from the displacements of the six cylinders

measured by linear potentiometers attached to each of them. The air is brought to the

upper and lower chambers of the cylinders by pairs of flexible tubing that are connected

to the HCI.

The pneumatic actuators were chosen against the more powerful hydraulic ones

because they were smaller, cleaner and safer. Both approaches have fluid escapes but

a hydraulic oil leakage can be physically dangerous to the user and also very messy.

Another possible solution would have been electrical actuators, but they have a lower

size–to–power ratio and cannot maintain continuous forces without overheating. In the

case of the mobility simulator, continuous high forces are necessary to sustain the user’s

weight.

(a) RMA CAD design (b) RMA Prototype

Figure 3.1: The Rutgers Mega–Ankle Stewart Platform [15].

3.1.1 Hardware Design

The Rutgers Mega–Ankle is similar in structure to the initial, Rutgers Ankle version

developed by Girone and Bouzit [42] (Figure 3.2). The initial platform could not

generate enough force and torque to be used in standing. Although the standing system
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uses two platforms, each of them has to be able to handle the weight of a person by

itself because walking involves shifting one’s weight from one foot to the other. The

smaller version of the platform could lift at most 75 kg of static weight. The torque

output of the platforms was much less, so the maximum load the initial platform could

balance was around 20 kg. Making a Stewart platform powerful enough to lift and

balance a patient is easily done by using larger actuators. However, the RMA robot

has to be small enough to be easily deployed, and have little friction in order to achieve

a usable mechanical bandwidth. These requirements bring along several limitations.

Figure 3.2: Rutgers Ankle (RA) robot [14].

The lateral distance between the user’s feet while using the simulator imposes a

constraint on the RMA robot’s footprint dimensions. The height of the robots has to

be limited as well so that taller users can fit on the system without interference with

the top cross bar of the unweighing frame. In addition, an increased robot height can

potentially make the user uncomfortable inducing stress.

The low friction requirement limits even more the choices for actuators, because

low friction pneumatic cylinders are usually available only in small sizes that are not

powerful enough for the mobility simulator.

Pneumatic Cylinders

The solution to increase the lifting capability of the RMA robot is to use larger, more

powerful pneumatic cylinders. Besides having a larger force output, the new cylinders
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have to be frictionless and as small as possible. The model that best fit these require-

ments was the M32 cylinder produced by Airpot Inc. (Norwalk, CT) Figure 3.3 shows

side by side the new M32 model and the E16 model used by the smaller RA version of

the platform. The new cylinder is visibly larger and can output 572 N of force, which

is four times more than that of the E16 model. This means that, roughly, the new

platform is able to lift four times more weight than the old one. Section 4.6 presents in

detail the new platform’s load–handling capabilities. In spite of being longer, the M32

model still has the same 100 mm stroke as the E16 model. Both models support air

pressures up to 100 PSI.

(a) Model M32 (b) Model E16

Figure 3.3: Pneumatic cylinders from Airpot Inc.

The new M32 cylinders are not only longer but also have a larger diameter than

model E16. To avoid interference between neighboring cylinders at their base mountings

they had to be distanced farther apart. For a Stewart platform to have a maximal lateral

workspace, the distance between neighboring mountings has to be as small as possible.

The initial version of the platform had a distance of 25.4 mm between two neighboring

cylinders due to their small diameter. The M32 model has a square cross–section of

50 mm by 50 mm. To avoid interference, the M32 cylinders should be mounted at

a distance of at least the diameter of the circle circumscribing the cross–section. The

diameter of that circle is approximately 70 mm. To reduce this distance, and by that to

increase the lateral workspace, the cylinders have to be attached to thinner extenders

that lift the bulky part of the cylinder (Figure 3.1(b)). Because the cylinders are always

at an angle, the extenders move the large diameter parts in positions where they are

far enough from each other. The trade–off is that the platform becomes higher and
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possibly less comfortable to use. The new platform’s 458 mm height is almost double

that of the RA design.

Cylinder/Potentiometer Assembly

Each of the six cylinders has a linear potentiometer attached to it to measure the

shaft displacement (Figure 3.1(b)). The potentiometer has to be very well aligned

with the cylinder so that the dual–shaft assembly can move without friction. Because

both cylinder and potentiometer shafts have a tight fit in their respective bodies, the

smallest misalignment can cause the assembly to get stuck and eventually break. The

fixed parts of the cylinder and the potentiometer are connected with wide and rigid

brackets that keep the two bodies parallel. The connection of the two mobile shafts

is more complex because it has to overcome the inherent slight misalignments. The

solution is a flexible mobile link (Figure 3.4) that can bend along the motion axis and

swivels a little around it. The free motion allowed by this link still has to be restricted

to prevent the potentiometer shaft from being forced in extreme positions.

Figure 3.4: Cylinder/potentiometer mobile assembly.

As mentioned before, the cylinder extender has the role of making the assembly

thinner at the joint region so that the mountings on the fixed base can be closer. At

the end of the cylinder shaft, the joint adapter also has an extension that prevents the

interference between the mobile links of two neighboring assemblies. The role of the

spring washer above the mobile link is to prevent it from getting stuck due to machining

residue around the inner edges. The stopper washer is designed to prevent the cylinder
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from being broken by not allowing the shaft reach the bottom when being slammed

close.

After the Rutgers Mega–Ankle has been built and entered the controller develop-

ment phase, it became apparent that the mobile links of neighboring cylinders were

interfering, causing damage to the linear potentiometers. To avoid such problems, the

design of the mobile link has been changed so that the linear potentiometer connection

was lowered relative to the cylinder body, hence increasing the space between neigh-

boring assemblies (Figure 3.5).

Figure 3.5: New mobile link detail.

Joint Swiveling Range

The joints of the Rutgers Mega–Ankle robot are 2DOF universal joints custom designed

to be small and frictionless. An important aspect of the joint design is the swiveling

blocker that restricts the joint’s motion (Figure 3.6). Without it, the joint range is

more than 180 deg, which allows the cylinders or the mobile base to get in singular

positions from where the controller cannot bring it back.

For the joints attached to the mobile base, the swiveling blocking mechanism is

designed as two discs, one around the joint adapter and one around the joint fork. The

position of the disc along the adapter’s axis and the radii of the two discs are computed

so that when the joint is rotated to the extreme, they hit each other. The blocker

reduces each side of the joint range of motion by 7 degrees leaving a maximum rotation
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Figure 3.6: Joint range stopper.

range of 166 deg.

The fixed base joint blockers were not part of the initial design. However, due to the

slight differences between the CAD design and the prototype, the unconstrained range

of the bottom joints allowed the cylinders to reach vertical orientations. A force applied

in a direction parallel to the joint’s horizontal axes, while the cylinder is in a vertical

position, will not cause any torque to rotate the cylinder around its vertical axis, hence

the assembly will not move and the joint will be forced in a direction it was not designed

to support. The forces applied by a human foot to the RMA robot during walking are

considerable and could damage it if ever applied in the situation described above. To

prevent such events from happening, joint blockers have been built (Figure 3.7) and

attached to the cylinder extender. The joint range has been reduced by 10 deg, which

is enough to cause the cylinder to rotate under a horizontal force parallel to the joint’s

axle.

Fixed Base

The fixed base is the largest part of the platform (Figure 3.8). It sits on the floor on

rubber strips and it is bolted down to prevent it from sliding. Inside, the base has a

cavity where the tubing and wires coming from the cylinders and potentiometers are

connected together. These connections are protected from outside interference by a lid.

The six joint mounting holes are placed on a circle of 203.2 mm radius and neighboring
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Figure 3.7: Lower joint range blockers detail.

holes are positioned 50.8 mm apart. This is less than the 70 mm necessary without

using the extenders but it is still twice as far compared to the distance in the RA robot.

(a) Top view (b) Bottom view

Figure 3.8: Fixed base.

Although larger, the distance between the new platform’s joint mountings has little

effect on the workspace because in comparison to the distant joints this distance is

still small enough. However, it does have an effect on the kinematic model. The RA

platform used a simplified, 3–3 model (Figure 4.1(c)) that considered neighboring joint

positions coincidental. Although this model yielded low positional errors, it is not fit

for the RMA design where the distance is considerably larger. The shape of the base

was changed from the RA’s circular version to a triangular one to allow the platforms
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to be positioned closer to each other. See Section 3.1.2 for details.

Mobile Base

The mobile base closes the loops of the Stewart platform robot connecting together the

mobile ends of the actuators. In general, it has to be lightweight to avoid additional

load and strong enough to support the forces applied at the end–effector. In the Rutgers

Mega–Ankle case, the mobile base has to provide mounting means for the JR3 sensor

and has to be as small and light as possible.

(a) Top view (b) Bottom view

Figure 3.9: Mobile base.

As shown in Figure 3.9, the mobile base has a bucket like structure for mounting the

force sensor. Lowering the force sensor in the mobile base saves about 20 mm from the

overall platform height. The entire base has been cut to a triangular shape to reduce

its size. To reinforce the peculiar shape resulting after the cut, web–beams have been

added underneath (Figure 3.9(b)).

The joint mountings are positioned on a circle of 101.6 mm radius. The distance

between neighboring mountings is 30.48 mm. Although larger by 5 mm than in the

case of the RA, the ratio between the close and distant joint distances is small enough

not to affect the size of the workspace.
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Force Sensor

The force sensor used by the Rutgers Mega–Ankle platform is a JR3 6DOF sensor model

45EE15A (Figure 3.10(a)). The new platform design brings a difference in the force

sensor also. Although the model is the same as the one used by the smaller RA platform,

the input ranges have to be larger to accommodate the weight of a person (Table 3.1).

Table 3.1: Force sensor input range.
X Y Z

Min Max Min Max Min Max
Force -667 N 667 N -667 N 667 N -2224 N 2224 N

Torque -127 Nm 127 Nm -127 Nm 127 Nm -127 Nm 127 Nm

The larger ranges raise a reading resolution issue. The force sensor outputs voltages

between -10 V and 10 V. The voltage is read through a 12–bit A/D converter. This

means that the Z force interval of (−2224, 2224) is mapped on the digital interval of

(−2048, 2047). This gives a theoretical Z–force resolution of 1.085 N. The maximum

forces measurable along the X and Y axes are half as those measured along the Z–

axis. Thus, the resolution of the sensor on the X and Y axes (horizontal plane) is

approximately 0.5 N. The measured noise of the sensor is below 0.12 N.

(a) Model 45E15A (b) Force sensor Assembly

Figure 3.10: JR3 force sensor and assembly.

Figure 3.10(b) shows the assembly of the mobile base and the force sensor. As we

have mentioned before, the “bucket” in the mobile base is designed to reduce the height

of the platform. However, the sensor does not completely sink into the bucket, rather
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it sticks out by half of its height. This elevation actually prevents the foot binding

installed on top to interfere with the nuts holding the joints to the base.

Foot Binding

The foot binding is a part connected to the force sensor on which the user’s foot is

secured prior to the exercise (Figure 3.11(a)). It is designed as a thin but rigid stainless

steel plate with multiple side holes for mounting the Velcro straps.

(a) Foot Binding (b) Protractor mounted under the
binding

Figure 3.11: Rutgers Mega–Ankle End–Effector.

The connection to the force sensor is made using four bolts. The holes for the

screws are extended as arches to allow easy orientation adjustments. Such adjustments

are necessary depending on the relative position of the two platforms. The orientation

of the foot binding is a parameter that must be given to the controller in order to

adjust the reference coordinate frames. The orientation angle must be accurate and

easy to find so that adjusting the bindings does not become time consuming. A paper

protractor has been designed and attached to the force sensor underneath the foot

binding. The angle values on the protractor show through a specially designed opening

in the foot binding.
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3.1.2 Dual Platform Configurations

The relative position of the two platforms is important mainly because of the distance

it creates between the user’s feet. During walking, while the swinging foot passes the

support foot, the ankles get very close to touching each other. Hence, the distance

between the two platforms must be as small as possible in order to simulate realistic

gait. Figure 3.12 shows four possible configurations of the dual platform systems. The

system is defined by five reference frames: the user’s reference frame, the fixed bases’

reference frames and the mobile bases’ reference frames.

In aligned configuration, (Figure 3.12(a)) all the five frames are parallel to each

other. Because this situation does not take advantage of the triangular cut of the plat-

forms, the minimum distance between the user’s ankles is 558 mm. This configuration

is suitable for sitting exercises or special lateral step training. A simple way to make

this configuration work for walking is to move the mobile bases’ home positions in-

ward (Figure 3.12(c)). The distance between the ankles is reduced to 355 mm but the

workspace of platform is also drastically reduced.

(a) Aligned (b) Close

(c) Aligned–displaced (d) Close–rotated

Figure 3.12: Top views of dual platform configurations [11].



34

A configuration suitable for walking is shown in Figure 3.12(b). The distance be-

tween the user’s ankles is reduced to 254 mm. This configuration requires software

transformations of the readings since the platforms are not aligned with the refer-

ence frame. These transformations are handled transparently by the controller once

it is given the foot binding orientation. An ideal situation would be the one shown

in Figure 3.12(d) where the mobile bases are rotated and displaced inward reducing

the distance between ankles to only 127 mm. Unfortunately, this configuration cannot

be reached by the current design of the platform, and even if it were reachable the

workspace would be practically null.

Platform Interference

Setting up the two platforms in such close proximity, makes it possible for their cylin-

ders to hit each other causing uncontrollable disturbances, improper functioning and

damage. The evaluation of the platforms interference was done using a VR simulation

of the RMA robots.

The VR simulation was designed to be configurable for testing various situations.

A parameter file provided the dimensions for the designed parts. The dimensions were

taken from the CAD files and input into the application. The simulation provided

support for one or two platforms to be rendered and analyzed simultaneously. In a

two–platform setup, the relative position and orientation of the two platforms was

also configurable. In order to test the dual platform configurations presented in Sec-

tion 3.1.2, the orientation of the mobile bases and the foot bindings were also linked

to configurable parameters. The simulation was run in three main configurations: sin-

gle platform (Figure 3.13(a)), two aligned platforms (Figure 3.13(b)), and two close

platforms (Figure 3.13(c)).

The platforms were positioned sequentially in configurations obtained by sampling

an estimated bounding space at equidistant points. At every point, the inverse kine-

matic equations were solved and the length of the cylinders computed. If the cylinder

lengths were within the physical ranges of the actual actuators, the simulation pro-

ceeded to check for interference between parts. The interference was checked by doing
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(a) One platform (b) Two aligned platforms (c) Two close platforms

Figure 3.13: Rutgers Mega–Ankle platform simulation developed with WorldToolKit
(Sense8 Co.).

bounding box collision detection between the following parts: actuator envelopes, po-

tentiometers, force sensor mounting and mobile joints. The actuator envelopes are the

cylinders that enclose the actual actuator dimensions (Figure 3.13). The actuators are

modeled as boxes and their corners are sticking out of the cylindrical envelopes. This

is because the actual actuators have rounded corners and the envelopes are made to fit

the real dimensions.

The results of the analysis showed that the optimal inter–foot distance versus plat-

form workspace ratio was provided by the configuration shown in Figure 3.12(b). The

minimum distance between the platforms in this situation was calculated to be 180 mm.

This distance added to this configuration’s minimum inter–ankle distance of 254 mm

was still too large for simulating gait (during walking the feet can be as close as to

nearly touch each other). To be able to reduce this distance and avoid interactions

between the platforms, a Plexiglas sheet was installed vertically between the platforms

shielding them from each other. With the shield separating them, the platforms were

installed at 100 mm distance.

3.2 Electro–Pneumatic RMA Controller Interface

The RMA control interface is shown in Figure 3.14. It consists of a regular PC case

containing a compact size PC board, a hard–drive, custom electronics, pneumatic valves
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and tubing. The embedded PC board (Ampro Inc., San Jose, CA) has a Pentium III

933 MHz processor and 128 MB of RAM. The board provides a PC–104 interface used

to connect the A/D I/O boards. Each Stewart platform is connected to the front of the

interface (Figure 3.14(b) and 3.14(c)) by six pairs of pneumatic tubing (one for each

cylinder) and one electrical connector. The connectors on the front of the interface are

divided in three groups, each group having one electrical connector and four double

pneumatic connectors. This division in three separate modules reflects the internal

design of the interface. The green rectangles above each connector groups are LED bar

graphs that show in real time the pressure in the corresponding air channels.

(a) Internal view (b) Front view

(c) Connector groups

Figure 3.14: The Haptic Control Interface (HCI).

The interface shown in Figure 3.14 is the second–generation design from Girone’s
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initial system, the author of both designs being Mourad Bouzit [18]. This new archi-

tecture has a modular approach that allows the interface to drive simultaneously two

Rutgers Ankle or Rutgers Mega–Ankle platforms. In addition, the new design is com-

patible with the Rutgers Master Haptic Glove, being able to run up to three gloves

in parallel or one platform and one glove. There are four possible device connection

configurations. All these configurations are maximal in the sense that nothing else

can be connected to the control interface. Incomplete connections are also supported.

The detailed connections corresponding to these configurations are shown in Table 3.2.

“A”, “B”, and “C” are the three connector groups, “P” means platform, “G” means

glove and “-” means empty. A configuration is described by a group of three characters

showing the devices in order from left to right.

Table 3.2: Device connection configurations.
Electrical connection Pneumatic connection

(ABC) Device 1 Device 2 Device 3
P–P A1,A2,A3,A4,B1,B2 B3,B4,C1,C2,C3,C4
P–G A1,A2,A3,A4,B1,B2 C1,C2,C3,C4
G–P A1,A2,A3,A4 B3,B4,C1,C2,C3,C4
GGG A1,A2,A3,A4 B1,B2,B3,B4 C1,C2,C3,C4

3.2.1 Electric and Pneumatic Connections

Each of the three groups of connectors on the front of the control box corresponds to a

hardware module inside the box. A module consists of eight air–channels (pneumatic

tubing with controlled air pressure), twelve analog channels for reading sensors, eight

digital input channels for reading the ID of the connected device, and sixteen DIO

channels for opening and closing the valves.

The air pressure is controlled using solenoid ON/OFF matrix valves manufactured

by ITA Matrix Inc. Each such matrix valve contains eight independent micro–valves.

There are two types of valves used in the system: intake and exhaust. The matrix

valves are visible in the top–right corner of Figure 3.14(a).

An air channel consists of one air tubing having an intake and an exhaust valve

connected at one end, a pressure sensor somewhere in the middle and the outside
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connector at the other end. Each platform requires twelve air channels to actuate its

six double–acting cylinders. The control interface contains twenty–four air–channels,

which are sufficient to control two platforms simultaneously.

Figure 3.15 shows how the hardware is grouped. The eight air–channels of each

module use a pair of intake and exhaust matrix valves. The middle module is split

between the platforms. Each module is read and controlled through a Micro/Sys A/D–

I/O board model MPC550. Each A/D–I/O board provides sixteen A/D channels on

top of eight converters, and twenty–four DIO channels. Each matrix valve is controlled

through an 8–bit DIO port (eight channels). The remaining eight DIO channels are

wired to the front connector and are used to read the device ID. The A/D channels

of one Micro/Sys board are not enough to cover all the sensors needed to control one

platform, so the middle module’s board is shared between the side outputs. While

splitting the air–channels can be done in the software controller, the A/D channels

need to be multiplexed in hardware between the sensors. A switching mechanism was

designed by Bouzit to change the wiring configuration so that the interface could be

used with the Rutgers Master Haptic Glove also. The next section describes in detail

the workings of the switching mechanism.

Figure 3.15: Electrical and pneumatic connection diagram of the HCI.
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3.2.2 Hardware Switching

One platform requires a total of twenty–four A/D channels to read its sensors: twelve

to read the pressure sensors, six to read the linear potentiometers and another six A/D

channels to read the 6DOF force sensor. In other words, there are twelve signals read

directly from the RMA robot and twelve signals coming from inside the controller box

from its pressure sensors.

One haptic glove requires only sixteen A/D channels: four to read the pressure

sensors, four to read the glove cylinder displacements, and eight to read the Hall–Effect

sensors on the glove. Thus, a glove can be handled by only one module.

The switching mechanism allows the hardware to be reconfigured so that the middle

module could control a glove or can help controlling a platform connected to one of the

side connectors.

Figure 3.16: Hardware switching.

The switching mechanism changes the connection of the A/D channels between the

pressure sensors and the front connector pins. The switches are controlled through the

DIO channels provided by the PC board’s parallel port. In Figure 3.16 the three mod-

ules are placed vertically, each having a group of eight pressure sensors corresponding to

the eight air–channels, one A/D I/O board and a front connector. The switches in the

diagram are the lines with “0” or “1” written on them. Each line shows what sensors
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are connected to the A/D channels and what bit value activates that connection. The

lines that are not numbered represent fixed connections.

The first eight A/D channels of each A/D board read the first eight pins of their

corresponding front connector. The last four channels read the first four pressure sensors

in their module. Channels 9 through 12 can be changed between the last four pressure

sensors or the last four pins of the front connector (switches SA, SB and SC). The middle

A/D board has two additional switches, SB1 and SB2 that split the channels to the

side connectors A and C. So SB1 can switch the first four A/D channels of the middle

board between the last four pins of connector A and the first four pins of connector B.

Switch SB2 changes the connections between pins five to eight of connector B and the

last for pins of connector C.

When module B is not split, all the modules have the front connector fully read by

the A/D channels while four of the pressure sensors are ignored. This is the case when

only gloves are connected to the system because they need only four air–channels. When

a platform is connected to module A or C, the four unread pressure sensors are covered

by the A/D channels reading the last four connector pins. Since those connector pins

are necessary to read the twelve signals coming from the platform, the middle module

reroutes four of its A/D channels to read them. Once that is done, the middle connector

cannot be used with any device. Table 3.3 shows the four main device configurations

and the switch values necessary to accommodate them.

Table 3.3: Device connection configurations and the corresponding switching values.
Device configuration SA SB1 SB2 SB SC

P–P 1 1 1 1 1
P–G 1 1 0 1 1
G–P 0 0 0 1 1
GGG 0 0 0 0 0

3.3 Unweighing Frame

Another hardware component of the mobility simulator is the Unweighing System

(Biodex Co.). The Rutgers Mega–Ankle robots are strong enough to lift a 300 kg
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load each. In order to simulate a walking surface, the robots must not only sustain the

user but also keep the feet in fixed orientations. The capacity to maintain the orienta-

tion of the load is determined by the RMA device’s torque output capability. Based on

the size of the foot binding mounted on top of the RMA, it was determined that one

platform can balance a maximum dynamic load of 50 kg. During walking, a person’s

weight is fully shifted from one foot to another; hence, each of the two RMA robots

must be able to handle by itself the full weight of the user. The role of the Unweighing

System is to overcome the 50 kg maximum load limitation and make the simulator us-

able by the majority of patients. Due to the frame’s capacity to unload up to 60% of a

user’s weight, patients weighing up to 120 kg (250 lbs) may use the system successfully.

It has been determined empirically that supporting more than 40% of the user’s body

weight alters gait significantly. This finding is confirmed by the maximum unweighing

percentage chosen by Visintin in his study on training gait in stroke patients using body

weight support and a treadmill [113]. Thus, the maximum user weight supported by

the simulator is 83 kg (184 lbs)

Besides reducing the patient’s weight, the unweighing frame also improves safety

and comfort for the patient. A side effect of having the patient suspended in the frame

is a tendency to spin sideways while using the simulator. This is mitigated by the frame

handles, which the patient can hold during the exercise, thus reducing body lateral spin.

3.4 Large Screen Display

The Rutgers Ankle System used a 21–inch monitor to display the virtual environment

that was part of the exercise. Although not large, the monitor was sufficient to produce

immersion, as demonstrated during studies in which the therapy took place in a busy

clinic environment [16]. The role of vision in scanning the environment and preparing

for movement is a well–demonstrated requirement for gait [90, 91, 92]. It was considered

essential to produce an immersive environment whose complexity could be systemat-

ically manipulated based on task hierarchies [40]. Important aspects of gait related

to ambient conditions, attentional demands and traffic level can be delivered with the

proper visual surround. Thus, it was deemed necessary to scale the visual scene up for
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the mobility simulator system. A large back–projection screen (74” diagonal, viewable

area) was constructed by Scott Winter for displaying the virtual environment, in order

to increase the patient’s immersion. The display presents monoscopic images using

a high–intensity, high–resolution projector. Unlike other large displays (e.g. Barco),

which require dimming the ambient light, our display can be comfortably viewed with

the clinic lights on.
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Chapter 4

Rutgers Mega–Ankle Kinematics and Dynamics

4.1 Stewart Platform Kinematic Model

The general kinematic model of a Stewart platform does not make any assumptions

about shape or size of the two bases or about the position of the joints on each base.

Theoretically, the joints on each base need not be coplanar and do not need to be

positioned in symmetric fashion. The choice of architecture for a robot must consider

the solvability of the kinematic chains. The inverse kinematic calculations for a Stewart

platform robot are generally straight forward, but the forward kinematics are very

complex due to insufficient input data. However, certain “regular” aspects of a design

can drastically simplify the calculations [111, 118, 77].

In the case of the Rutgers Mega–Ankle (Figure 4.1(a)), all the six joints of each base

are coplanar and positioned at equal distances as follows: neighboring joints and distant

joints are placed on circles at equal distances within their respective bases. Neighboring

joints are pairs of joints placed close to each other on each base (e.g. B0 and B1). The

remaining pairs of joints are the distant ones (e.g. B1 and B2). The fixed base joint

circle has a radius twice the size of that of the mobile base. This model is generally

known as the 6–6 model because it has distinct joints on each base.

Although the model shown in Figure 4.1(a) simplifies the kinematic equations, they

are still quite complex. The simpler 6–3 kinematic model is presented in Figure 4.1(b).

The model is identical to the one presented before except that the neighboring mobile

joints are considered coincidental. This model does not reflect the actual structure of the

Rutgers Mega–Ankle robot. However, due to the small ratio between the neighboring

and distant joint distances, the accuracy of the results will not be affected significantly.

Collapsing the neighboring joints to one point can be used to reduce the number of

kinematic equations.

A further model simplification step can be taken by considering the neighboring
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joints on the fixed base to be coincidental. This is the 3–3 Stewart platform model in

which all the neighboring joints are sharing the same position (Figure 4.1(c)). This can

reduce the calculations even further but the errors created by the differences from the

real robot architecture are larger.

(a) 6–6 Kinematic model (b) 6–3 Kinematic model

(c) 3–3 Kinematic model

Figure 4.1: Rutgers Mega–Ankle kinematic models.

Before proceeding to the discussion of the kinematic equations, it is necessary to

make a few notation conventions (Table 4.1). The vectors representing the actuators are

marked as −→Li, and the vectors representing the joint position relative to their respective
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base are marked as −→Ai,
−→
Bi. The X, Y and Z components of a vector −→P will be written

as XP , YP , ZP .

Table 4.1: Kinematic model notations.
Model 6–6 Model 6–3 Model 3–3

−→
Li =

−−−→
BiAi, i = 0, . . . , 5

−→
Li =

−−−−−→
BiAbi/2c, i = 0, . . . , 5

−→
Li =

−−−→
BiAi, i = 0, . . . , 2

−→
Ai =

−−−→
OAAi, i = 0, . . . , 5

−→
Ai =

−−−→
OT Ti, i = 0, . . . , 2

−→
Ai =

−−−→
OT Ti, i = 0, . . . , 2

−→
Bi =

−−−→
OBBi, i = 0, . . . , 5

−→
Bi =

−−−→
OBBi, i = 0, . . . , 5

−→
Bi =

−−−→
OBBi, i = 0, . . . , 2

4.2 Inverse Kinematics

The problem of inverse kinematics for a manipulator in general is to compute the

position of the actuators based on the position and orientation of the end–effector (foot

binding) [32, 80]. In the Rutgers Mega–Ankle case, the inverse kinematics determines

the actuator vectors based on the position of the foot binding. This is necessary when

one controls the platform position through the position of the cylinders or for computing

the force applied by the platform by summing the force vectors of each actuator.

Because the position (translation and orientation) of the foot binding uniquely de-

fines the position of the mobile base and through it the position of each mobile joint,

the solution of the inverse kinematics problem is quite simple. The input data to the

model are the position coordinates (x, y, z) and Euler angles (α, β, γ) of the mobile base

with respect to the fixed base. From the Euler angles, the rotation matrix R of the

mobile base is shown in Equation 4.1 [32]. To simplify the writing cα is used for cos α

and sα for sinα.

R =


cα · cβ cα · sβ · sγ − sα · cγ cα · sβ · cγ + sα · sγ

sα · cβ sα · sβ · sγ + cα · cγ sα · sβ · cγ − cα · sγ

−sβ cβ · sγ cβ · cγ

 (4.1)

For the 6–6 kinematic model, considering ~P = (XP , YP , ZP ) the position vector of

the fixed base, the actuator vectors −→Li can be expressed as

−→
Li = R · −→Ai +−→

P −−→
Bi, i = 0, . . . , 5 (4.2)
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Substituting the values of R and P in Equation 4.2, the actuator vector values are

−→
Li =


XAi

·cα·cβ+YAi
·(cα·sβ·sγ−sα·cγ)+ZAi

·(cα·sβ·cγ+sα·sγ)+XP−XBi

XAi
·sα·cβ+YAi

·(sα·sβ·sγ+cα·cγ)+ZAi
·(sα·sβ·cγ−cα·sγ)+YP−YBi

−XAi
·sβ+YAi

·cβ·sγ+ZAi
·cβ·cγ+ZP−ZBi


i = 0, . . . , 5 (4.3)

The inverse kinematic solutions for the 6–3 model can be obtained from Equation 4.3

by substituting Ai by Tbi/2c. Similarly, The 3–3 model inverse kinematics can be ob-

tained from the 6–3 model by replacing Bi by Vbi/2c and removing the three identical

equations resulting after the substitution.

4.3 Forward Kinematics

The forward kinematic problem for a Stewart platform manipulator is to compute

the Cartesian position of the end–effector (foot binding) from the lengths of the six

actuators [32, 80]. The problem is significantly more complex than that of inverse

kinematics due to the lack of orientation information about the actuators. The problem

requires finding XP , YP , ZP , α, β and γ from the six non–linear equations shown in 4.3.

The most common approach to solve this problem is by using the Newton–Raphson

iterative method [118]. The functions fi used in the iteration are derived from Equa-

tion 4.2 by applying the norm to both sides. The algorithm starts from a solution

estimate, which is usually in the middle of the workspace. The next solution is calcu-

lated using Equation 4.5, where f(q) is replaced by 4.4.

fi(q) =
(
R(q)−→Ai +

−−→
P (q)−−→

Bi

)T (
R(q)−→Ai +

−−→
P (q)−−→

Bi

)
−−→

Li ·
−→
Li

q = (XP , YP , ZP , α, β, γ), solution estimate (4.4)

The next solution estimate is defined using the inverse Jacobian.

qn+1 = qn −
(

∂f(qn)
∂qn

)−1

f(qn) (4.5)
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The procedure is repeated until the error between the computed actuator length

and the real measured actuator length is lower than a given error bound or until a

maximum number of iterations have been completed [41, 83].

The advantage of the Newton–Raphson solution is that it can be applied to any

type of hexapod robot without changing the equations. It is also easy to implement.

The disadvantage is that there is no guarantee that it will converge [66]. Considering

that the iterative forward kinematics must yield results in real time, the number of

iterations must be limited due to the heavy floating point calculations required by the

procedure. If the algorithm does not converge in the given number of iterations, the

result has to be discarded and usually the previously calculated solution is kept as the

current position [118].

Extensive research has been done toward finding better solutions to the Stewart

platform forward kinematics. The most frequent ideas in the literature are focused on

finding a reasonable set of constraints for the kinematic model so that the resulting

equations would be either simpler or, even better, have closed–form solutions.

Zhang and Song [121] reduce the forward kinematic equations of a nearly general

Stewart platform to a 20th order polynomial. The nearly general constraint requires

the joint to be coplanar within their bases. The resulting polynomial is solved then

by numerical methods using Maple (Maplesoft Co.). Due to the duality of the system,

there are forty resulting solutions out half of which are eliminated by the requirement

of having the Z-coordinate positive.

Lee and Roth published a closed–form solution for a Stewart platform with the

joints placed on regular hexagons on both bases [69]. Although this simplifies the

kinematic equations, the workspace of such a robot is very small. For the same bases

and actuators, the robot’s workspace is larger if the joints are positioned alternatively

close and far from the previous joint on each base.

Liu et al. [73] derive the forward kinematic equations of a 6–3 Stewart platform.

The equations are simpler than the general 6–6 case because of the identities between

the mobile base joints. The equations are solved by the Newton–Raphson method.

Nanua et al. [82] reduce the forward kinematic equations of a simplified 3–3 model
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to an 8th order polynomial. The resulting solutions are all valid and the correct one

has to be chosen using the physical orientation ranges of the platform actuators.

Other solutions to the forward kinematics problem using approaches similar to the

ones above can be found in [118, 79, 73, 53, 61, 68, 69, 104].

A closed form solution for the 6–6 model can be found if the joints are positioned

on similar (linearly related) hexagons. Solutions to this configuration have been given

by Yang and Geng [118], Sreenivasan et al. in [106] and Ji and Wu in [61]. All solutions

use the similarity of the fixed and mobile base to express the mobile joint vectors −→Ai in

terms of fixed base joint vectors −→Bi (Equation 4.6). After substituting Equation 4.6 into

Equation 4.2, the terms of the six equations are arranged in a linear system of six vari-

ables. After the linear system is solved using Gaussian elimination [101], the solution

of the forward kinematics is computed by solving a few second order equations. The

solution proposed in [61] by Ji and Wu has been implemented and tested. Although

the implementation could replicate the results given in the article when applied to the

Rutgers Mega–Ankle robots, the characteristic matrix of the initial six by six linear sys-

tem was very frequently near–singular yielding numbers beyond the computer’s floating

point representation. For validation, the same algorithm was implemented in Matlab

and the results were identical. The same results were obtained by Bruyninckx in [21].

−→
Ai = µ

−→
Bi i = 0, . . . , 5 (4.6)

4.3.1 Rutgers Mega–Ankle Forward Kinematics Solution

The forward kinematics solution implemented for the Rutgers Mega–Ankle is the one

proposed by Nguyen and Pooran in [83]. The initial implementation has been done by

Girone for the smaller Rutgers Ankle robot prototype. The algorithm has been adapted

by Boian to the RMA controller and it has been improved in accuracy.

The approach proposed in [83] solves the direct position calculations of a 3–3 Stewart

platform model using Newton–Raphson iterations presented above. The solution is

stable and converges on average in three to five iterations. The results returned by the

implementation are not accurate though because they solve a 3–3 model rather than a
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6–6 model. The algorithm’s errors were small enough to make it suitable for the sitting

exercises, but they were too large for the mobility simulator and created problems

when performing collision detection between the foot and the virtual surface. The

main cause of the problems came from the discrepancy between the forward kinematics

solved on a 3–3 model and the accurate inverse kinematics solved on the real 6–6

model. The forward kinematics applied on the actuator positions calculated by the

inverse kinematics was not yielding the same initial Cartesian position. For instance,

when the platform was positioned at an elevation Zreal that mapped in the virtual

world to a position above the walking surface, the forward kinematics were returning a

smaller measured Z3−−3 that mapped to a virtual position below the walking surface.

The simplest way to solve this problem is to switch the inverse kinematics to use

the 3–3 model. While this approach would have yielded matching FK and IK results,

the actual Cartesian positioned calculated by the controller would have been inaccurate

and could have lead to position control problems.

A more computationally expensive solution would have been the implementation of

the 6–6 iterative forward kinematics. Since the design of the RMA platforms is close

to having the joints placed on similar hexagons and given the near singular matrices of

the closed–form solution implementation, there were good chances that the 6–6 model

could have been either unstable or require many iterations to converge.

The solution implemented relied on iterations applied outside the forward kinematics

algorithm. The inverse kinematics algorithm was known to be accurate. The results

of the 3–3 forward kinematics were input to the inverse kinematics procedure and the

resulting actuator positions compared to the measured actuator positions. The average

of the values were input back into the forward kinematics algorithm. The procedure was

repeated until the difference between the calculated and measured actuator positions

was less the 0.1 mm. This procedure requires an average three iterations to converge,

one iteration taking approximately 0.39 ms.
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4.4 Inverse Dynamics

The dynamic equations of a Stewart platform robotic system make the connection

between the position, velocity, acceleration and forces of the end–effector and those

of the cylinders [80]. As in the case of the kinematics, the equations can be solved

in two directions: forward dynamics and inverse dynamics. The forward dynamics

problem starts knowing the forces of the platform’s cylinders and outputs the end–

effector position, velocity and acceleration. This is useful for simulating the behavior

of the Stewart platform. For the mobility simulator application, the controller needs to

resist the external disturbances created by the user’s foot on the end–effector. For this

purpose, only the inverse dynamics of the RMA robot are calculated.

The problem of the inverse dynamics has been extensively researched and various

solutions have been offered. These solutions differ either by the formulation of the

equations of motion that are used, or by certain simplifications of the kinematic model.

In [73] Liu et al. derived the dynamic equations of a 6–3 Stewart platform using the

Lagrange equations of motion. Do and Yang [38] offer a fully derived solution for

the inverse dynamics based on the Newton–Euler equations of motion. Their platform

model uses spherical joints at the points where the cylinders are connected to the bases.

This brings in an extra degree of freedom that is idle and hence uncontrollable [120].

Zhang and Song in [120] address this problem using a model with universal joints. They

also use the Newton–Euler equations of motion but they are linked using the virtual

work principle. Other significant approaches can be found in [74, 72, 102, 64, 62, 88].

The inverse dynamics solution proposed by Zhang and Song [120] was adapted and

implemented for Rutgers Mega–Ankle controller. The model used by this method is

shown in Figures 4.2 and 4.3. The platform model presented in Figure 4.2 is the same

as that in Figure 4.1(a) except that point CA, which represents the center of mass of

the mobile assembly, is coincidental with the origin of the frame of reference OA.

Figure 4.3 presents the frames of references and variables attached to one actuator.

Frame [XjYjZj ] is parallel to the fixed base frame of reference OB in Figure 4.2. ij , jj

and kj are the unit vectors of frame [XjYjZj ]. The frame [XaYaZa] has the Xa axis
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Figure 4.2: 6–6 dynamic model; frames of reference.

aligned with the actuator pointing toward Ai (XA has the same direction as Li). ia,

ja and ka are the unit vectors of frame [XaYaZa]. [XmYmZm] is an intermediate frame

between [XjYjZj ] and [XaYaZa] having axis Zm identical to Zj and axis Ym identical to

Ya. The center of gravity of the cylinder’s fixed part is marked as Ci,1 and the cylinder

shaft’s center of mass as Ci,2. si is the distance from the center of mass of the fixed

part of the actuator to the mounting point Bi. ti is the distance between the center

of mass of the mobile part of the actuator (shaft) to the mounting point Bi. li is the

position of the actuator (length of vector −→Li). ri is the projection of Li on Xm. φi and

βi are the angles of the universal joint connecting the actuator to the fixed base.

4.4.1 Dynamic Model Considerations

The model assumes that the top base’s center of mass CA (Fig. 4.2) and the end–effector

position coincide with the center of the hexagon formed by the mobile base joints. The

Rutgers Mega–Ankle top base does not have a simple disc shape (Figure 3.9) and the

mobile base joints are not in the same plane with the end–effector. In addition, the

end–effector’s orientation can be changed. The inverse dynamics algorithm can still

be applied if all positions, velocities, accelerations and external forces of the mobile
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Figure 4.3: 6–6 Dynamic model; actuator i frames of reference and parameters.

assembly are translated on the Z–axis into the mobile base joint’s frame of reference.

This frame of reference is parallel to the original one, but is lowered so that its (X, Y )

plane contains all the joints. The mobile base center of mass can be considered to be

in the same position but the inertia tensor of the mobile assembly has to be calculated

with respect to lower frame’s origin. The joints attached to the fixed base require

further transformations of the input data and results because they are elevated from

the ground and hence are not in the same plane as the platform’s frame of reference.

The parameters required by the transformations mentioned above are specified in a

configuration file for each RMA robot. These parameters are:

• Measured elevation of the end–effector with respect to the frame of the mobile

base joints;

• The inertial tensor of the mobile assembly, calculated using AutoCAD Mechanical

Desktop with respect the point OA;

• Mass of the mobile base;

• Mass of the fixed part of the actuator including the mass of the fixed part of the

potentiometer;
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• Mass of the mobile part of the actuator, including the mass of the potentiometer

shaft;

• Position of the centroid of mass of the fixed part of the actuator measured from

point Bi;

• Position of the centroid of mass of the mobile part of the actuator measured from

point Ai;

• Inertia tensor of the fixed part of the actuator calculated with respect to the

centroid of mass;

• Inertia tensor of the mobile part of the actuator calculated with respect to the

centroid of mass;

4.4.2 Inverse Dynamics Implementation

The implementation of the inverse dynamics is adapted from [120] by adding the initial

data input transformations. The algorithm is structured in the following phases:

1. Input data transformation: transform the end–effector position, velocity, acceler-

ation and forces in the OA frame of reference;

2. Actuator position analysis: compute ri, ti, li, si, φi and βi;

3. Actuator velocity analysis: compute the linear and angular velocity of the mobile

end of each actuator;

4. Actuator acceleration analysis: compute the linear and angular accelerations of

the mobile end of the actuator and the linear accelerations of the two centroids

of gravity;

5. Actuator inertial forces and torques analysis: compute the inertia forces and

torques of each actuator;

6. Mobile base inertial forces and torques analysis: compute the inertia forces and

torques of the mobile base;



54

7. Resulting forces and moments calculation: compute the resulting forces and mo-

ments of the actuators and mobile assembly;

8. Jacobian derivation;

9. Partial angular velocity matrix derivation;

10. Partial linear velocity matrix derivation;

11. Equations of motion derivation using the virtual work principle;

12. Actuator forces calculation.

The notations are used throughout the algorithm are presented in Table 4.2.

Variable Type Description
−−→
BpE,

−−→
BγE (3,1) vector Input data. Measured position (linear and angular) of

the end–effector represented in frame OB.
−−→
BvE,

−−→
BωE (3,1) vector Input data. Measured velocity (linear and angular) of the

end–effector represented in frame OB.
−−→
BaE,

−−→
BαE (3,1) vector Input data. Measured acceleration (linear and angular)

of the end–effector represented in frame OB.
−−−→
BFxE,

−−−→
BτxE (3,1) vector Input data. Measured forces (linear and angular) of the

end–effector represented in frame OB.
−−→
ApE (6,1) vector Input data. End–effector linear position represented in

frame OA.

mi,1 number Input data. Mass of the fixed part of actuator i

mi,2 number Input data. Mass of the mobile part of actuator i

mA number Input data. Mass of the mobile base
−−→
BpA,

−−→
BγA (6,1) vector Position of the end–effector (linear and angular) trans-

formed to frame OA.
−−→
BvA,

−−→
BωA (6,1) vector Velocity of the end–effector (linear and angular) trans-

formed to frame OA.
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−−→
BaA,

−−→
BαA (6,1) vector Acceleration of the end–effector (linear and angular)

transformed to frame OA.
−−−→
BFxA,

−−−→
BτxA (3,1) vector Measured forces (linear and angular) transformed to

frame OA.
−−→
BFA,

−−→
BτA (6,1) vector Inertial forces of the end–effector (linear and angular)

BRA (3,3) matrix Rotation matrix of the end–effector OA with respect to

frame OB

BRi (3,3) matrix Rotation matrix of actuator i with respect to frame OB

−→
Bvi (3,1) vector Linear velocity of joint i in frame OB

−→eωi (3,1) vector Angular velocity of joint i in frame [XeYeZe]
−−→
BaAi (3,1) vector Linear acceleration of joint i in frame OB

−→eαi (3,1) vector Angular acceleration of joint i in frame [XeYeZe]
−−→eac1,i (3,1) vector Linear acceleration of fixed center of mass of actuator i

in frame [XeYeYe]
−−→eac2,i (3,1) vector Linear acceleration of mobile center of mass of actuator

i in frame [XeYeZe]
−−−→eFc1,i (3,1) vector Inertial force of fixed center of mass of actuator i in frame

[XeYeZe]
−−−→eFc2,i (3,1) vector Inertial force of mobile center of mass of actuator i in

frame [XeYeZe]
−−→eMi (3,1) vector Inertial torque of actuator i in frame [XeYeZe]
−−→eIc1,i (3,1) vector Inertial matrix of the fixed part of actuator i in frame

[XeYeZe]
−−→eIc2,i (3,1) vector Inertial matrix of the mobile part of actuator i in frame

[XeYeZe]
−→
AIA (3,1) vector Inertial matrix of the mobile base in frame OA

−−→
BFA (3,1) vector Inertial force of the mobile base OB

−−→
BMA (3,1) vector Inertial torque of the mobile base in frame OB
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−−−→eRc1,i (3,1) vector Resultant force of the center of mass of the fixed part of

actuator i in frame [XeYeZe]
−−−→eRc2,i (3,1) vector Resultant force of the center of mass of the mobile part

of actuator i in frame [XeYeZe]
−→eTi (3,1) vector Resultant torque of actuator i in frame [XeYeZe]
−−→
BRA (3,1) vector Resultant force of the mobile base in frame OB

−−→
BTA (3,1) vector Resultant torque of the mobile base in frame OB

J (6,6) matrix Jacobian matrix

eGi (6,3) matrix Partial angular velocity matrix of the fixed center of mass

of actuator i in frame [XeYeZe]

eHc1,i (6,3) matrix Partial linear velocity matrix of the fixed center of mass

of actuator i in frame [XeYeZe]

BGA (6,3) matrix Partial angular velocity matrix of the mobile base in

frame OB

BHA (6,3) matrix Partial Linear velocity matrix of the mobile base in frame

OB

λ (6,1) vector Actuator forces

ui,n number Auxiliary variables

X−→
P

Y−→
P

Z−→
P

number The X, Y or Z components of the subscript variable

Table 4.2: Inverse dynamics notations.

Input Data Transformation

BRA is calculated from Equation 4.1 for the angles of
−−−→
BPaE.

−−→
BpA =

−−→
BpE − BRA

−−→
ApE

−−→
BγA =

−−→
BγE

(4.7)

−−→
BvA =

−−→
BvE +

−−→
BωE ×

−−→
ApE

−−→
BωA =

−−→
BωE

(4.8)
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−−→
BvA =

−−→
BaE +

−−→
BαE ×

−−→
ApE +

−−→
BωE ×

−−→
BωE ×

−−→
ApE

−−→
BαA =

−−→
BαE

(4.9)

−−−→
BFxA =

−−−→
BFxE

−−−→
BτxA =

−−−→
BτxE +

−−→
ApE ×

−−−→
BFxE

(4.10)

−→
Li is calculated by applying the inverse kinematics to

−−→
BpA and

−−→
BγA.

−→
Ai = −→

Li +−→
Bi (4.11)

Actuator Position Analysis

Considering the auxiliary variables ui,0 and ui,1 to be

ui,0 = X−→
Ai

−X−→
Bi

ui,1 = Y−→
Ai

− Y−→
Bi

(4.12)

the values of ri and li can be written as

ri =
√

u2
i,0 + u2

i,1

li = ||−→Li||
(4.13)

si and ti are known quantities given as parameters of the dynamic model. The φi

and βi angles are calculated as

sin(φi) = ui,1/ri

cos(φi) = ui,0/ri

φi = atan2(sin(φi), cos(φi))

sin(β) =
X−→

Ai
li

cos(β) = ri
li

βi = atan2(sin(βi), cos(βi))

(4.14)

BRi is calculated from equation 4.1 for the angles (0,−βi, φi);
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Actuator Velocity Analysis

From the kinematic model in Figure 4.1(a), the linear and angular velocities of the

mobile assembly and cylinders can be written as

−→̇
Ai =

−−→
BvA +

−−→
BωA × (

−−→
BpA −

−→
Ai)

ṙi = cos(φi)X−→̇
Ai

+ sin(φi)Y−→̇
Ai

l̇i = cos(βi)ṙi + sin(βi)Z−→̇
Ai

φ̇i = 1
ri

(cos(φi)Y−→̇
Ai

− sin(φi)X−→̇
Ai

)

β̇i = 1
ri

(Z−→̇
Ai

− sin(βi)l̇i)

−→̇
eωi = φ̇i

−→ekm − β̇
−→eje =


φ̇isin(βi)

−β̇i

φ̇icos(βi)



(4.15)

Actuator Acceleration Analysis

Using the kinematic model, the mobile assembly acceleration can be calculated as fol-

lows.
−→̈
Ai =

−−→
BaA +

−−→
BαA × (

−−→
BpA −

−→
Ai) +

−−→
BωA ×

−−→
BωA × (

−−→
BpA −

−→
Ai) (4.16)

r̈i, l̈i, φ̈i and β̈i can be calculated by deriving the expressions of ṙi, l̇i, φ̇i and β̇i.
−→̈
eωi

is calculated through the derivation of
−→̇
eωi

r̈i = cos(φi)X−→̈
Ai

+ sin(φi)φ̇Y−→̇
Ai

l̈i = 1
li

(X2−→̇
Ai

+ Y 2−→̇
Ai

+ Z2−→̇
Ai

− l̇i
2
+ ui,0X−→̈

Ai

+ ui,1Y−→̈
Ai

+ ZAi
Z−→̈

Ai

)

φ̈i = 1
ri

(cos(φi)Y−→̈
Ai

− sin(φi)X−→̈
Ai

− 2φ̇iṙi)

β̈i = 1
ri

(Z−→̈
Ai

− sin(βi)l̈i − β̇icos(βi)li − β̇iṙi)

−→̈
eωi =


φ̈isin(βi) + cos(βi)φ̇iβ̇i

−β̈i

φ̈icos(βi)− sin(βi)φ̇iβ̇i



(4.17)
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Referring to Figure 4.1(a) the linear acceleration of the two centers of mass of

actuator i can be expressed as:

−−→eac1,i =


−si

(
Y 2−→eωi

+ Z2−→eωi

)
si

(
Z−→eαi

+ X−→eωi

Y−→eωi

)
si

(
−Y−→eαi

+ X−→eωi

Z−→eωi

)

 (4.18)

−−→eac2,i =


si
ti

X−−→eac1,i

+ l̈i

si
ti

Y−−→eac1,i

+ 2l̇iZ−→eωi

si
ti

Z−−→eac1,i

+ 2l̇iY−→eωi

 (4.19)

Actuator Inertial Forces and Torques Analysis

−→
Bg = [0.0 0.0 9.81]T

−−−→eFc1,i = −mi,1

(−−−→
Bac1,i + BAT

i

−→
Bg
)

−−−→eFc2,i = −mi,2

(−−−→
Bac2,i + BAT

i

−→
Bg
)

−−→eMi = −
(−−→eIc1,i +−−→eIc2,i

)−→eαi −
−→eωi ×

(−−→eIc1,i +−−→eIc2,i

)−→eωi

(4.20)

Mobile Base Inertial Forces and Torques Analysis

−−→
BFA = −mA

(−−→
BaA +

−→
Bg
)

−−→
BMA = BRA

(
−AIA

BRT
A

−−→
BαA − BRT

A

−−→
BωA × AIA

BRT
A

−−→
BωA

) (4.21)

Resulting Forces and Moments Calculation

−−→eRi,1 = −−−→eFc1,i

−−→eRi,2 = −−−→eFc2,i

−→eTi = −−→eMi +−→eii ×
(
si
−−−→eFc1,i + ti

−−−→eFc2,i

)
−−→
BRA =

−−→
BFA +

−−−→
BFxA

−−→
BTA =

−−→
BMA +

−−−→
BτxA

(4.22)

Jacobian Derivation

Considering q̇ = [q̇0 q̇1 q̇2 q̇3 q̇4 q̇5]t and using on the expressions of
−→̇
Ai,

−→̇
eωi, ṙi, and l̇i

calculated above we can write
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l̇i = Ji0q̇0 + Ji1q̇1 + Ji2q̇2 + Ji3q̇3 + Ji4q̇4 + Ji5q̇5 = [Ji0 Ji1 Ji2 Ji3 Ji4 Ji5]q̇ (4.23)

Where, q̇ = [q̇0 q̇1 q̇2 q̇3 q̇4 q̇5]t = [
−→̇
Ai

−→̇
eωi]t. The values of Jij can be derived from

the equation above as functions of already calculated entities.

Partial Angular Velocity Matrix Derivation

The partial angular velocity matrix is used to calculate angular velocities of the ac-

tuators from the motion of the end–effector. To derive that matrix it is necessary to

express
−→̈
eωi in terms of q̇0, q̇1, q̇2, q̇3, q̇4, q̇5.

For ease of writing, we will use auxiliary variable ui,2 through ui,11 to store inter-

mediary expressions.

ui,2 = X−→
Ai

−X−→
OA

ui,3 = Y−→
Ai

− Y−→
OA

ui,4 = Z−→
Ai

− Z−→
OA

ui,5 = −sin(φi)/ri

ui,6 = cos(φi)/ri

ui,7 = −ui,4cos(φi)/ri

ui,8 = −ui,4sin(φi)/ri

ui,9 = ui,2cos(φi)/ri + ui,3sin(φi)/ri

ui,10 = l/ri

ui,11 = −sin(βi)/ri

(4.24)

Using the variables above and the expression of
−→̇
eωi calculated above,

−→̇
eωi can be

expressed as
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−→̇
eωi =


sin(βi) 0

0 −ui,10

cos(βi) 0


 ui,5 ui,6 0 ui,7 ui,8 ui,9

0 0 1 ui,3 −ui,2 0

 q̇+


0

−ui,11

0

 [Ji0 Ji1 Ji2 Ji3 Ji4 Ji5]q̇

(4.25)

Hence, matrix eGi, for which
−→̇
eωi = eGiq̇, can be expressed as

eGi =


sin(βi) 0

0 −ui,10

cos(βi) 0


 ui,5 ui,6 0 ui,7 ui,8 ui,9

0 0 1 ui,3 −ui,2 0

+


0

−ui,11

0

 [Ji0 Ji1 Ji2 Ji3 Ji4 Ji5]

(4.26)

Partial Linear Velocity Matrix Derivation

The partial linear velocity matrix makes the connection between the actuators’ linear

velocities and the end effector motion. Because the fixed part of each cylinder does

not have any linear velocity, its eHi,1 matrix will be zero. The velocity of the mobile

actuator shaft is the X component of l̇i, hence

eHi,2 =


1

0

0

 [Ji0 Ji1 Ji2 Ji3 Ji4 Ji5] (4.27)
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Equations of Motion Derivation Using the Virtual Work Principle

According to the virtual work principle, the sum of virtual work done by all forces

and torques should be zero during the time interval δt [8]. In the case of the Stewart

platform, these forces are: the forces and torques applied by the mobile base, the forces

applied on each of the six cylinders, the torques of the center of mass of the cylinders,

and the forces applied by the user on the top base. Considering that the platform

undergoes a virtual motion q̇∗ that is within the boundaries of the workspace, the

following equations hold true:

φ̇∗ = Jq̇∗ (4.28)

ω∗
i = eGiq̇

∗ (4.29)

v∗i,1 = eHi,1q̇
∗ (4.30)

v∗i,2 = eHi,2q̇
∗ (4.31)

ω∗
i is the angular velocity of cylinder i. v∗i,1 and v∗i,2 are the velocities of the two

centers of mass of cylinder i. eGi is the matrix of partial angular velocities of cylinder

i and eHi,1 and eHi,2 are partial velocity matrices of the fixed and mobile centers of

mass of cylinder i.

Considering eRi,1, eRi,2 and Ti the resultants of all the forces and torques applied on

cylinder i, BRA and BTA the force and torque applied to the mobile base by the user,

and finally considering τ the vector of forces and torques applied by the end–effector,

the virtual work equation can be written as:

φ̇∗T τδt +

(
5∑

i=0

v∗Ti,1
eRi,1 +

5∑
i=0

v∗Ti,2
eRi,2 +

6∑
i=0

ω∗T
i

eTi

)
δt +

 BRA

BTA

 q̇∗δt = 0 (4.32)
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Substituting equations 4.28, 4.29, 4.30 and 4.31 in equation 4.32 and eliminating δt

and q̇∗

JT +
6∑

i=1

eHi,1
eRi,1 +

6∑
i=1

eHi,2
eRi,2 +

6∑
i=1

eGi
eTi +

 BRA

BTA

 = 0 (4.33)

All the terms appearing in equation 4.33 can be derived using inverse and for-

ward kinematics. The Jacobian calculation was presented in section 4.4.2. From equa-

tion 4.33, τ can be calculated using the Gaussian elimination method. From τ , the

cylinder forces can be computed using the inverse Jacobian.

4.5 Platform Workspace

A “C” program was developed to compute the workspace of the RMA robot. A bound-

ing box of the workspace was calculated by physically measuring the minimum and

maximum positions that the platform could reach. The resulting space was then sam-

pled at constant intervals in all directions. For each point the inverse kinematics were

performed to calculate the actuators’ positions if the end–effector was positioned there.

If the calculated actuator lengths were within the physical limits, then the point was

part of the workspace. If the calculated actuator lengths were exceeding the physical

limits the point was discarded.

Following an approach similar to Badescu’s solution for calculating the angular

workspace [5], several mobile base orientations are tried for each sampled point. The

orientations are chosen by equidistantly sampling the space defined by the minimum and

maximum angles the robot can reach in each of three directions. For each orientation

that is achieved, a counter attached to the sampled point is increased. Thus, the

resulting data will offer a better understanding of the orientational workspace of the

platform at various workspace points.

In the dual platform configuration, the workspace of the system is the union of

each platform’s workspace (Figure 4.4) considering the distance between the mobile

bases. Considering that the workspace of the platform does not extend horizontally
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(a) View Along the X–axis (b) View along the Y–axis

Figure 4.4: Platform workspace [11].

beyond the limits of a circle circumscribing its fixed base, the interference between two

neighboring platforms is determined by the amount of overlapping between the two

circles. The largest overlap occurs in the close configuration (Figure 3.12(b)). The

fixed base circumscribed circles overlap by 63 mm so the combined workspace of two

platforms will have a butterfly shape.

4.6 Platform Force and Torque Output

The force and torque output of the platform were computed by adding the cylinder

vectors, scaled by the minimum or maximum forces that they could apply. The two

cylinder forces (i.e. minimum and maximum) are not equal in absolute value because

the piston area is not equal in both the upper and lower chambers. The maximum

force (outward) output of one cylinder is 581 N. The minimum force (inward) is 525.7

N. The maximum lifting force (Z–axis) that the platform can apply in various points

with a flat orientation is presented in Figure 4.5.

The maximum and minimum torques that the platform could generate were com-

puted by maximizing the cylinder vector sums on the X and Y directions separately.

First, the unit torques were calculated (i.e. summing the normalized vectors without

scaling them). Then each torque vector was scaled back using the maximum cylinder

force if the torque sign was positive and the minimum cylinder torque if the torque
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Figure 4.5: Maximum upward force (Z–axis) [11].

sign was negative. The resulted torques in each point of the workspace are presented

in Figure 4.6.
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(a) Maximum pitch torque (Y–axis) (b) Minimum pitch torque (Y–axis)

(c) Maximum roll torque (X–axis) (d) Minimum roll torque (X–axis)

Figure 4.6: Platform torque output.
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Chapter 5

Servo Controller

The design of the Mobility Simulator requires each of the Rutgers Mega–Ankle robots

to perform several tasks such as: sustain the user’s weight, follow the motion of the

user’s foot, move the front foot backward once contact with the virtual surface has been

established, or shake, jolt, or resist the motion of the foot based on the virtual surface

properties. To accomplish these tasks the RMA platforms must be able to function in

either position control mode or force control mode. Furthermore, they must be able to

compensate for external disturbances and must easily switch between these functioning

modes based on the commands from the virtual reality simulation.

The RMA robots have Stewart platform architecture and use pneumatic actuators.

The control of both platforms is executed by the control interface presented in chapter 3.

The servo–controller architecture is divided in three loops (Figure 5.1). The inner

most loop implements the pressure control for each actuator air chamber. The middle

loop implements the cylinder level position and force control. The outer most loop

implements the platform level control including position, force and external disturbance

compensation.

5.1 Pressure Control

Each cylinder chamber is connected to the controller interface through a pneumatic

tubing. Inside the interface, this tubing is split in two branches, one branch being

connected to the main air intake and the other one to the main exhaust. Each of the two

branches is controlled by a separate solenoid ON/OFF valve. The air pressure inside

the tubing and the cylinder chamber is regulated by opening or closing the solenoid

valves. Based on a desired change in pressure, the pressure control loop calculates

the duration each of the two valves should be kept open. This approach is known as

Pulse–Width Modulation (PWM).
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Figure 5.1: Controller diagram.

The transition function from desired pressure change to valve opening time is imple-

mented using a proportional gain and a derivative gain. The PD controller performed

well so that an integral term was not necessary. During testing, the integral compo-

nent has been tested but it has been determined that the improvement it brought was

minimal, while it created the risk of integrator windup. Such a situation occurred fre-

quently when applying external disturbances with the same frequency as the controller

bandwidth. Such disturbances caused the controller to lag behind, hence creating a

continuous error that accumulated in the integrator term. When the disturbance was

discontinued, the integral factor caused the pressure values to skyrocket and then very

slowly to come back to the desired values. The initial form of the pressure control
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transition function is shown in Equation 5.1.

Tvalve = kpPerror + kdṖerror (5.1)

Solenoid Valve Dead–Band

In its initial form, the PD controller displayed oscillations of the controlled pressure.

Reducing the kp gain eliminated the oscillations but the steady state error increased

significantly. Studies on the solenoid valves’ reaction time [119] determined that after

the moment are open/close command was issued, there was a time delay of about 4 ms

until any change in pressure was measured. The delay, called dead–band, varied from

valve to valve depending mostly on the age of the hardware. To compensate for this

delay, each Tvalve was added the valve’s dead–band (Equation 5.2).

Tvalve = kpPerror + kdṖerror + TDeadBand (5.2)

Cylinder Chamber Volume Compensation

The control scheme presented above functioned satisfactorily when applied to the

smaller Rutgers Ankle robots. In the case of the Rutgers Mega–Ankle platforms, the

same implementation was characterized by larger steady state errors for large changes

in pressure. The only difference between the two robots that could affect the pres-

sure control was the cross section of the pneumatic actuators. It has been determined

that for large changes in pressure it was not enough to consider only the pressure in

calculating the output time, but also the volume of uncompressed air that had to be

pushed into the cylinders. The volume of air compensation is presented in Equation 5.3.

The response of the pressure controller to step and sinusoidal inputs are presented in

Figures 5.2, 5.3, and 5.4.

Tvalve = kpPerror + kdṖerror + Tdead−−band + kvVuncompressed (5.3)
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Figure 5.2: Pressure control response to a step input of 40 PSI amplitude and 1.8 Hz
frequency.

5.2 Cylinder Control

By controlling the air pressure in the lower and upper chambers of a double acting

cylinder it is possible to control the force applied by the piston along the cylinder axis

as well as its displacement.

5.2.1 Cylinder Force Control

The force applied by the cylinder shaft is a direct consequence of the pressures in the

two chambers of the cylinder. This direct dependency allows the controller to use

an open loop strategy. The task of the force control is to calculate the new desired

pressure of each cylinder chamber based on the desired force of the actuator. There are

two important aspects of this transformation:

1. The change in pressure in each cylinder chamber should be minimal. Thus, the
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Figure 5.3: Pressure control response to a step input of 80 PSI amplitude and 0.86 Hz
frequency.

transformation of the cylinder force into two pressures has to take into account

the current pressures in the cylinder chambers.

2. The pressures in the two chambers should be balanced. If the previous require-

ment cannot be achieved, choose pressures by subtracting equal amounts from

the equilibrium pressures.

For instance, a force of 20N can be obtained by having the two cylinder chambers

apply any of the following (lower, upper) pairs of forces: (100N, 80N), (20N, 0N), or

(400N, 380N). The controller has to pick the one closest to the current pressures in the

cylinder chambers. Considering PL and PU as the measured pressures in the lower and

upper chamber of the cylinder, sU and sL as the area of the two cylinder chambers,

and Fd as the new desired pressures for the two chambers PdU and pdL are calculated

using the formula in 5.4.
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Figure 5.4: Pressure control response to a sinusoidal input of 50 PSI amplitude and 1.0
Hz frequency.

Pdiff = PL∗sL−PU∗sU−Fd
sU+sL

PdL = PL − Pdiff

PdU = PU − Pdiff

(5.4)

The resulting solution (PdL, PdU ) can be mathematically correct and yet invalid.

For instance, 20N of force can be obtained by applying the following pair of pressures

(580N,−600N). In such cases, the force difference is calculated around half of the

maximum controllable pressure (Equation 5.5).

Pdiff = 0.5Fd
sL

PdL = 0.5PCtlMax
sL

PdU = sL
sU

(0.5PCtlMax − Pdiff )

(5.5)
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Because the two chambers of the pneumatic cylinder do not have the same area,

it is possible for Equation 5.5 to yield negative values forPdL or PdU . In such case,

the minimal change and the balanced pressure goals are not enforced anymore, and the

forces are calculated by applying the minimum controllable pressure in one chamber and

the difference in the other one (if not greater than the maximum controllable pressure).

5.2.2 Cylinder Position Control

While force control can be implicitly done through pressure control, the position control

cannot follow the same approach, because there is not direct relationship between the

air pressure in the chambers and the position of the piston. The controller in this case

is a closed–loop PD. The loop is closed by the linear potentiometers that measure the

displacement of each piston.

In order to position the cylinder shaft, the controller has to calculate a cylinder

force to be applied to the shaft based on the change in displacement. In addition, the

controller has to compensate for the external disturbances constantly applied to the

platform, and hence to the pneumatic cylinders, by the user’s foot. The cylinder level

disturbances are calculated using the Jacobian from the platform level disturbances

measured by the force sensor. Hence, the input to the position controller consists

of a new desired position Xd and a new desired force Fd calculated to compensate

for disturbances. Based on these two inputs, the control function computes the new

cylinder desired force, and from this force computes the desired pressures in the cylinder

chambers. The control function in its initial form is

Fd = kpXe + kdẊe + Fd (5.6)

The model above functioned properly only for light external disturbances. A heavier

load on the cylinder would cause it to either have a large steady state error or, if the gains

were increased, to become unstable by entering oscillations with increasing amplitude.

It has been initially expected that adding the cylinder measured disturbance Fd will be

sufficient for reaching the target under external forces. However, the pressure control
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bandwidth being as low as 2 Hz, the delay between the moment the external disturbance

was measured and the response to it was large, and hence the tracking error was not

reduced.

To solve this behavior it was necessary to add adaptive factors to the proportional

and derivative gains in the classical PD model above.

kpadaptive
= kp(1 + kpfFd)

kdadaptive
= kd(1 + kdfFd)

(5.7)

The kpf and kdf gains were given small positive values. The effect of the adaptive

component was to increase the proportional and the derivative gain with a fraction

of the external disturbance. This permitted lower kp gains for better stability, but

also caused the gains to increase to overcome the effects of the external forces. The

kdf gain was also proportionally increased with the disturbance in order to reduce the

oscillations caused by the increased kp values.

The model described above, handles the control of the robot’s position while resisting

external forces. During the operation of the simulator, the control mode has to be

switched from force to position quite often. This is accomplished through a switch

variable that cancels out the positional term from the transition function. The complete

implementation of the controller is presented in Equation 5.8. The responses of the

position controller to step inputs of various amplitudes and frequencies are presented

in Figures 5.5 and 5.6.

Fdadaptive
= kswitch

(
kp(1 + kpfFd)Xe + kd(1 + kdfFd)Ẋe

)
+ Fd (5.8)

5.3 Platform Control

The outer–most control loop handles the robot’s behavior as a whole. The position and

force control at platform level implement an open–loop model. This is possible because

of the direct relation between the position and force of the actuators and the position

and force of the platform. Using the forward and inverse kinematics and the inverse
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Figure 5.5: Cylinder position control response to a step input of 4 cm amplitude and
1.1 Hz frequency.

dynamics, the desired motion and force of the platform is transformed in cylinder space,

where the control scheme is simpler and faster.

The choice to execute the control solely in cylinder space relies mainly on the need

for real–time response of the robot. The cylinder control implementation is compact

and very fast because it does not involve complex kinematic and dynamic calculations.

On the other hand, the kinematics and dynamics of the platform are much slower, and

cannot be run in a timely manner. Achieving a constant execution rate for the platform

level loop would require the introduction of delays meant to keep the iterations’ duration

constant.

The duration of one iteration can vary significantly depending on the position of the

platform. This is due to the iterative process necessary to solve the forward kinematics.

The convergence condition is not satisfied at the same point for all platform positions.

Because the platform–level operations are too complex and slow to be run inside an
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Figure 5.6: Cylinder position control response to a step input of 8 cm amplitude and
0.7 Hz frequency.

interrupt handler, it is necessary to execute them as part of the main program. Another

reason for the varying loop rate is the serial communication that the main program has

to handle at the same priority as the platform level control.

Hence, a choice was made not to try to stabilize the rate of the outer loop to avoid

the delays such an approach would create in the communication with the host PC. The

kinematics and dynamics are executed as fast and as often as possible, but the actual

robot behavior is controlled at actuator level by a timely accurate loop run inside an

interrupt handler.

5.3.1 External Force Compensation

During a simulation, the RMA robots function in two main modes: position control or

force control. The position control poses the problem of resisting external disturbances

while keeping the desired position. This model requires a combination of force and
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position control, which is usually difficult due to the inherent incompatibility of the

two control modes. Applying a force in a certain direction implies an acceleration

that will change the position of the robot. The combination of these two modes is

implemented at cylinder level. The role of the platform level loop is to provide the

cylinder control loop with the forces each cylinder has to resist.

An earlier version of the system used impedance control to resist external forces [119].

The controller used the measured forces to calculate a new desired position for the plat-

form. The position was calculated so that the platform would move against the direction

of the forces.

Pdimpedance
= Pd − kimpedanceFmeasured (5.9)

The impedance control yielded good results for the system in sitting. For the mo-

bility simulator, the impedance control failed due to lack of accuracy in the calculated

feedback. To sustain the weight of a person the platforms had to function very close

to their maximum capacity, outputting large forces and torques in order to balance the

user. The transformation of force into position change modeled by the impedance is

an inaccurate approximation of the feedback, which failed to correlate the actuators

properly to resist such large forces and torques. The final version of the controller uses

the inverse dynamics algorithm presented in chapter 4.

The inverse dynamics calculate accurately the external forces at cylinder level given

the forces measured by the force sensor and the measured position, velocity and accel-

eration of the platform’s end–effector. For more usage flexibility, the measured forces

are scaled by a responsiveness gain before being input to the inverse dynamics. This

permits to easily adjust the behavior of the robot with regard to disturbances. The

default value of the responsiveness gain is 1.0.

Finput = krespFmeasured (5.10)
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5.3.2 Back–drive Mode

The RMA robot functions in back–drive mode whenever it has to follow the user’s

swinging foot. In these situations, the platform has to compensate for its own weight

and apply the same forces the user applies to the end–effector. Thus, the back–drive

mode is essentially force control mode with a negative responsiveness gain. While

the inverse dynamics take into account the mass and inertial tensors of the cylinders

and mobile base of the platform, the back–drive mode is obtained by just setting the

responsiveness gain to −1.0.

With a gain of −1.0 the platform follows the user’s foot, without resistance, but

only for very small forces. While a gain of 1.0 is sufficient to resist very large forces,

the −1.0 gain is not sufficient to follow them. This can be explained by the fact that

when following the foot’s motion, the forces recorded by the force sensor change very

fast and the cylinder level force and the pressure control loops are not fast enough to

follow the change in forces. Essentially, the Rutgers Mega–Ankle robot itself has its

own elasticity and damping created by the controller and by the limited air input to

the cylinder. In order to overcome the resistance when following high forces, it was

necessary to increase the absolute value of the responsiveness gain. The gain also had

to be given different values based on the direction of the force it was applied to. This

is caused by the number of cylinders affected by the force. For instance, an upward

vertical force, requires an identical change in force in all six cylinders. This becomes

a problem given the limited size of the main air input. A horizontal force causes an

equal number of cylinders to intake and exhaust air, hence creating less resistance from

the main air intake size. The table below presents the responsiveness gain values used

during back–drive mode.

Table 5.1: Back–drive gains.
X Y Z

Linear -10.0 -10.0 -40.0
Angular -16.0 -16.0 -16.0
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5.3.3 Mechanical Bandwidth

The mechanical bandwidth of the Rutgers Mega–Ankle platform has been measured

using the step response for several amplitudes of the input signal and along all directions

separately. Figure 5.7 shows the platform response to a step input signal of amplitude

10 cm and frequency 0.8 Hz. The bandwidth measurement results are summarized in

Table 5.2.

Figure 5.7: Platform response to a step input function of amplitude 10 cm and frequency
0.8 Hz along the Z–axis.

The bandwidth is not identical along the three directions. On the Z–axis, the

bandwidth is 60% lower than on the Y–axis and 64% lower than on the X–axis. When

oscillating along the Z–axis, the platform has to make larger position changes in all

cylinders than when moving along the X or Y axes. The difference in bandwidth along

the Y and X axes is explained by the asymmetry of the platforms in the XY plane.

Table 5.2: Rutgers Mega–Ankle Mechanical bandwidth.
Axis X Axis Y Axis Z

Amplitude 5 cm 2.5 Hz 2.3 Hz 1.0 Hz
Amplitude 10 cm 2.2 Hz 2.0 Hz 0.8 Hz
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5.3.4 Robot Stability in Foot Support Mode

One of the first problems encountered during the development of the system was the

stability of the RMA platforms under load. The robots were stable when subjected to

external forces if there was no load attached to them. However, the working regime

for which they were developed, involves resisting forces while supporting the weight

of the user. Figure 5.8 shows the response of the robot to a 0.5 Hz sinusoidal input

with amplitude of 0.18 m. The load on the robot was 50 lbs strapped rigidly to the

foot binding. Under load, the motion was distorted and the amplitude of the robot

increased slowly eventually becoming unstable.

Figure 5.8: RMA platform response to a sinusoid input along the Y–axis (back–front)
with 0.5 Hz frequency and 0.18 m amplitude.

The cause of this problem was the addition of the desired cylinder force Fdes with

the cylinder motion force Fmov. Under load, the resulting forces were too high and

caused the robot to become unstable. Increasing the derivative gain slowed down the

instability but it didn’t solve it. The solution was to reduce the proportional gains by

a minimum of 42%. With lower gains, the platform was stable under load, but had

very little power to move the user’s foot backward during the foot support phase, hence

making the system unusable. In addition, when the system was unloaded, the steady

state error was significantly larger. The use of an integrator term was avoided because

the usage of the system caused it to windup consistently.

Two adaptive gains were used to bring the robot to respond properly under load.

The gains added a fraction of the measured cylinder load to the proportional and
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derivative gains respectively. The proportional adaptive component helped increase the

moving force of the platform when under load, while the derivative adaptive component

was increased to compensate for the high proportional gains and insure the stability of

the system.

Figure 5.9 presents the response of the platform to the same sinusoidal input signal,

under a 50 lbs load, with and without the adaptive component added to the lowered

proportional and derivative gains. While both the constant and the adaptive response

were stable, the adaptive strategy provided the necessary power to move the load closer

to the desired position, and reducing the error by approximately half. The adaptive

gains did bring a side effect slightly visible in Figure 5.9; when the robot moves with

higher velocity, the adaptive derivative gains increases the damping of the system slow-

ing it down and the releasing it as the load on the robot shifts and the force is reduced.

This can be seen as a change in the slope of the adaptive curve in Figure 5.9.

Figure 5.9: Response comparison lower constant gains with and without the adaptive
component.

A more evident effect of the adaptive strategy is illustrated in Figure 5.10. Having

the robot standing still in the center of the workspace, a horizontal disturbance (jolt) is

applied along the Y–axis. Without the adaptive gains, the robot becomes unstable and

spins out of control. With the adaptive gains, the disturbance is counteracted and the

robot comes back to the desired position. The 4 seconds long recovery time of this test

is shorten during usage, because the user’s foot provides sufficient damping to make

the stabilization much quicker.
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Figure 5.10: Robot response to a jolt along the Y–axis.

5.3.5 Force Minimization in Free Motion Mode

The second major functioning mode of the RMA robot is following the foot during the

swing phase of the gait. In this mode, the platform has to compensate for its own

weight and for the forces applied by the user to the end–effector, so that the user can

swing the foot without effort. To achieve this, the servo controller disables the cylinder

position control by canceling out the moving force Fmov, and by switching the measured

forces signs by changing the value of Kt from 1 to -1. While these changes cause the

RMA robot to follow the user’s foot, the motion is very slow and large forces are felt

at the foot. Figure 5.11 shows the forces measured at the foot during one swing phase.

Figure 5.11: Free mode forces during swing for Kt = -1.

The source of these large forces has been determined to be the damping created by

the pneumatic actuators. While a Kt of 1 is sufficient to resist forces in foot support
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mode, in free mode, besides responding with a force to the user’s force, the robot also

has to move, which involves a much large air intake/exhaust activity. The damping is

mostly coming from airflow limitations imposed by the small intake and exhaust sections

of the cylinder chambers. To overcome this problem, Kt was increased in absolute value.

The increase was done for each of the robot’s 6DOF. The Z–axis (up–down) translation

gain was approximately four times larger than the rest of the gains, because the motion

on that direction required all the cylinders to either intake or exhaust, hence putting

more airflow in a single direction. The measured forces for the increased Kt gains

are shown in Figure 5.12. The forces are now reduced approximately eight times to a

maximum of 11 N, which is comparable to the weight of a snow boot.

Figure 5.12: Free mode forces during swing for larger Kt.

5.4 Controller Task Scheduling

To insure proper timing accuracy, the software was designed to use hardware interrupt

handlers to execute the controller tasks. Such tasks included sensor readings, pressure

control, position control, etc. The hardware interrupts were generated by one of the

three A/D I/O boards used inside the haptic control interface.

During development, the controller brought up run–time problems such as wrong

time measurement, and slow or unstable serial port communication. Both these aspects

are crucial to the system. Inaccurate time measurement results in control instabilities,

while a lack of reliable serial communication makes the system unusable for integration
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with a VR simulation. The source of the problems was traced to be the amount of

work done by the control tasks in the hardware interrupt handler. The controller time

was measured by dividing the number of interrupts started by the hardware timer by

the timer frequency. The result was approximately 40% less than the real duration

measured by an independent stopwatch. This was the effect of overloaded interrupts.

If an interrupt runs for longer than its period, the next interrupt will be activated one

period later than normal. That means that the interrupt counter will be less than

it should be by one interrupt, hence the time measurement error. The cause of the

unstable serial port communication proved also to be caused by these long interrupt

handlers, since it relied on a separate interrupt triggered at 200 KHz. Being delayed too

much by the control interrupt handlers, the serial communication routine was missing

bits transmitted by the PC host.

While purely an implementation issue, this behavior was posing a serious problem to

the proper functioning of the system. In order to solve it, the controller task durations

were measured and then broken down into pieces that were small enough to fit inside

the period of the control interrupts. Once the tasks were divided into smaller pieces, it

was necessary to optimize the order of their execution. Without this step, the controller

would execute too many sub–tasks in the same interrupt handler, hence getting back

to the initial behavior.

5.4.1 Controller Tasks

During the simulation, the low level controller has to execute the following tasks:

1. Platform level control: kinematics and dynamics. As discussed above these oper-

ations are too long to be executed inside an interrupt handler.

2. Cylinder level control: position and force. Executed for 12 cylinders (6 for each

RMA platform)

3. Pressure control. Executed for 24 air chambers. It is executed with the frequency

of the PWM controller.
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4. Read sensors. Each platform is associated with 24 sensors: 12 pressure sensors, 6

linear potentiometers measuring the actuator displacement, and 6 force readings

from the force sensor.

5. Close valves at the end of their PWM cycle slice. This is a very short task that

has to run very fast, its frequency being the product between the PWM control

frequency and the PWM resolution

Task Frequencies

The frequencies of these tasks are defined by the mechanical ON/OFF frequency of

the solenoid valves. While the vendor data specify that the valves can work at a

maximum 300 Hz open/close frequency, during testing it was determined that the

prolonged usage required by the simulator caused the electronic components to over–

heat at this maximum frequency. To protect the hardware, the valves are currently

used at a 250 Hz frequency. This frequency is used for the pressure PWM controller.

The resolution of the PWM controller is the number of intervals into which the PWM

period is divided. This value defines the time accuracy of the controller. Empirically

it was determined that the optimal resolution is 30. Thus, the frequency of the valve–

closing task is 7500Hz.

The frequencies of the rest of the tasks were chosen empirically using as criteria the

fact that outer loop frequencies should be less than the inner loop frequencies. Because

of the different control task frequencies, the sensor readings were divided so that the

pressure sensors were read at a higher frequency as needed by the pressure control while

the others were read at a lower rate. The tasks and their frequencies are presented in

Table 5.3. The timer interrupt frequency was set to the largest of the task frequencies,

in this case 7.5 KHz.

Task Durations

The duration of each task was measured by executing it separately for a large number

of repetitions and dividing the total time by the number of repetitions. As a result,
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Table 5.3: Controller tasks and frequencies.
Task Frequency
Cylinder level control 100 Hz
Pressure control 250 Hz
Close valves 7500 Hz
Pressure sensor readings 500 Hz
Position and force sensor readings 100 Hz

it became apparent that the longest task was reading the sensors. The sensor reading

task was then divided into 4, 8 and 12 subtasks and each of those were measured as

well. The separation between pressure sensor readings and the rest of the tasks was

done by having a part of the sub–tasks handle only pressure sensors. The measured

durations are shown in microseconds in Table 5.4.

The overhead of starting the interrupt handler was measured to be 0.000005 mi-

croseconds.

5.4.2 Static Scheduling Algorithm

An interrupt’s activity should not last longer than the period with which it is generated.

This requirement is particularly difficult for the system presented here because the

amount of work to be done is close to the limit of what the processor can do and

because the controller is designed to support not only a dual–platform configuration

but also, single platform or dual–haptic glove configurations too. To automatically

accommodate the changes in control work caused by the devices connected, a static load

balancing routine was implemented to distribute the work uniformly across interrupt

handlers. The load–balancing algorithm considered all the subtasks with their durations

and frequencies, and assigned each of them a starting interrupt so that the maximum

number of subtasks executed in each handler was minimized.

The starting moment of each subtask is calculated starting from the subtask with

the highest frequency to the one with the lowest frequency. For each subtask, all the

possible starting moments are tried and the one for which the maximum load of an

interrupt is minimal is assigned to the subtasks. It is important to mention that the

starting moments are tried over a number K of possibilities where K is the least common
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Table 5.4: Controller task durations.
Task Duration (µsec)
Close Valves 0.9475
Cylinder level control 1.3325
Pressure control 5.0800
Read sensors (all at once) 494.4000
Read sensors. Subtask 1 of 4 124.2000
Read sensors. Subtask 2 of 4 123.0000
Read sensors. Subtask 3 of 4 124.2000
Read sensors. Subtask 4 of 4 124.2000
Read sensors. Subtask 1 of 8 61.6000
Read sensors. Subtask 2 of 8 61.4000
Read sensors. Subtask 3 of 8 61.6000
Read sensors. Subtask 4 of 8 61.4000
Read sensors. Subtask 5 of 8 61.6000
Read sensors. Subtask 6 of 8 62.6000
Read sensors. Subtask 7 of 8 61.6000
Read sensors. Subtask 8 of 8 63.6000
Read sensors. Subtask 1 of 12 41.8000
Read sensors. Subtask 2 of 12 41.8000
Read sensors. Subtask 3 of 12 40.6000
Read sensors. Subtask 4 of 12 41.8000
Read sensors. Subtask 5 of 12 41.6000
Read sensors. Subtask 6 of 12 41.8000
Read sensors. Subtask 7 of 12 41.8000
Read sensors. Subtask 8 of 12 40.6000
Read sensors. Subtask 9 of 12 40.6000
Read sensors. Subtask 10 of 12 39.4000
Read sensors. Subtask 11 of 12 43.0000
Read sensors. Subtask 12 of 12 42.8000

multiple of the task frequencies. The subtasks will have the same start time relative to

each other within every group of K interrupts. The load of an interrupt is calculated

by summing up the execution times of the subtasks it has to run.

An example of scheduled and un–scheduled task execution is presented in Fig-

ure 5.13. The example presents the case of controlling one platform only, because

the number of tasks for two platforms is too large to be included in the image.
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Figure 5.13: Controller task execution. (a) Scheduled; (b) Unscheduled.

5.5 Controller Software

Prior to the haptic control interface presented in chapter 3 the controller boxes handling

the haptic glove or the original Rutgers Ankle robot were simpler and designed to serve

only one type of device. The new controller box was designed to function with all

the haptic devices developed by the lab. To accommodate this extension, the software

controller had to be re–written. Although core control models such as the pressure or

cylinder control were kept and later extended, the framework of the software had to be

designed to satisfy the following requirements.

• Flexibility. The software had to support from the start three devices: the RMII–

ND haptic gloves, the Rutgers Ankle platforms, and the Rutgers Mega–Ankle

platforms. The implementation had to make the switch between devices trans-

parent to the user.

• Configurability. The controller had to accept new devices of the types described
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above without rebuilding it from the source code. In addition, changes to the

device settings had to be also done without recompiling.

• Stability. The controller had to be virtually error free to avoid accidents. Given

the large force output by the Rutgers Mega–Ankle robots, software failures were

not admissible.

• Comprehensive testing. The testing of previous systems proved to be complex

procedures involving several steps. To improve the reliability of the testing pro-

cedures, clear and consistent interfaces were necessary to move focus from the

testing configuration to the actual hardware functioning.

• Easy calibration. Similar to the testing process, the calibration of the controller

interface and the haptic devices is complex and requires full focus on the behavior

of the hardware. Since the calibration is also performed as a periodical mainte-

nance procedure, it was necessary to streamline it and make it as intuitive and

flexible as possible.

• Adaptation to hardware failures. The Rutgers Mobility Simulator is a prototype

system and hardware failures are inherent. The controller software had to provide

the possibility of quick fixes to solve the problems such as a broken sensor or a

faulty solenoid valve.

• RS232 communication protocol. A structured RS232 communication protocol is

necessary for the support of multiple devices connected to the controller interface.

The controller software was implemented as a command line shell supporting com-

mands for manipulating or controlling the hardware. An API was designed and im-

plemented to model all the hardware entities with software structures for a consistent

approach to hardware manipulation. A comprehensive set of controller commands was

implemented to provide support for easy hardware testing, controller gain tuning, and

various simulation modes for the mobility simulator as well as for the system in sit-

ting. Details on the controller hardware API and the command set are presented in

Appendix A
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Chapter 6

Task level control

The system simulates walking by moving the platforms back and forth similar to step-

ping on a treadmill. Each robot either follows the user’s swinging foot or slides the

supporting foot backward. The user starts from a position with both feet touching

the virtual ground, where both RMA robots support the weight of the user. Upon

lifting one foot, the corresponding platform switches the control mode from position to

force control. It then follows the user’s foot compensating for its own weight. When

the swinging foot touches the simulated ground (in front of the supporting foot), the

corresponding platform switches back to position control. When the back foot is lifted

to take the next step, the front foot robot slides backwards toward the starting posi-

tion. The simulation tasks are split between the servo control interface and the PC.

The control interface handles the changing of the control mode, sliding the front foot

backwards, and coordinating the simultaneous motions of both platforms. The PC per-

forms collision detection and notifies the RMA control interface when the foot touches

the ground, so that the RMA robots switch the functioning mode from free–motion too

support. The PC sends along information about the surface properties and the haptic

effects to be applied.

6.1 Controller Interface Algorithm

The algorithm controlling the platforms is defined by a state transition diagram. The

nine possible states (Table 6.1) describe the operation modes of each platform (see

Figure 6.1). The transition between two states is either implicit when the current mode

ends, or is triggered by a command from the PC or by the actions of the other platform.

At system startup, both platforms are in NULL (N) state. From this state, the

platforms switch to PARKING (G) mode, which moves the platforms to the “home”

position located in the middle on the workspace. Upon reaching the parking position,
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Table 6.1: Walking states.
Acronym State name

N NULL
G Parking
P Parked
S Standby
R Release
F Free
L Locking
T Translation
H Hold

the platform’s state is changed to PARKED (P). This state is used while the VR simula-

tion on the host PC is not running. Any of the remaining states switch to PARKING at

the end of the simulation. These transitions are not displayed in Figure 6.1 to improve

its readability.

The transition from PARKED to STANDBY (S) is triggered by the STANDBY

command sent by the simulation at startup. This state corresponds to the supporting

foot during walking. The controller interface reads the forces applied by the user. If the

user pulls up with more than 10 N, it releases the foot by switching to the RELEASE

(R) state. The 10 N force is the threshold force that the foot has to apply to signal

lifting. It has been determined empirically based on the following two criteria:

1. The foot–lift threshold force should be small enough not to cause discomfort;

2. The foot–lift threshold force should be sufficiently large so that accidental foot

motions during the support phase will not cause a functioning mode change.

The RELEASE state is responsible for gradually changing the control mode over a

200–millisecond interval from holding position to free motion. The 200–millisecond de-

lay is necessary to avoid control instabilities resulting from sudden gain changes. This

applies to changes in gains from positive to negative and from negative to positive.

Several transition functions have been tested for the gain change over the 200 ms in-

terval. Linear and sinusoidal transformations caused very quick state changes between

LOCKING and RELEASING due to the foot being pushed to forcefully upward by
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Figure 6.1: The walking state transition diagram [11].

the sudden gain change. Once the foot was too far up, the platforms would pull it

down causing forces larger the 10 N necessary to trigger the RELEASE state. A double

nested sine transformation was used to solve the problem. This curve is very smooth

at the ends of the interval where the change is critical.

When the control mode switching is finished, the platform enters the FREE (F)

state and follows the patient’s foot motion compensating for its own weight. When the

simulation sends the TOUCH GROUND command the platform changes its state to

LOCK (L). As a safety feature, if the user’s foot is lowered in the bottom half of the

workspace and the weight is about to be supported by the cylinders’ armature instead

of pressured air, the HCI controller automatically switches to LOCK state and notifies

the VR simulation about it.
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Figure 6.2: Gain transition functions.

At the end of the LOCK state, the platform can either start sliding backwards in the

TRANSLATION (T) state, or hold position in HOLD (H) state. The TRANSLATION

state moves the front foot backwards to imitate the functioning of a treadmill. However,

if the other foot is touching the virtual ground, the platform must hold the position

without generating motion. This is where the HOLD state is necessary. It is used to

correlate the motions of the two platforms. In general, when a foot touches the ground

while the other foot is still sliding backwards, both platforms switch to HOLD. HOLD

is identical to STANDBY, except that it reacts to the actions of the other platform. At

the end of the RELEASE state, if the other platform is on HOLD, the current platform

sends it a RESUME command to continue with its previous state.

During evaluation, the algorithm presented above raised two problems. The first

problem occurred when the user tried to lift the foot before the TRANSLATE state

was finished. In the initial implementation, the TRANSLATE state was ignoring the

upward pull of the user’s foot, and was taking the support foot all the way to the back,

hence insuring that the entire workspace length would be available for the next step.

This behavior had to be disabled, so that an upward force larger than 10 N would cause

the state to change from TRANSLATE to RELEASE. Although this change eliminated

the usage confusion, it allowed the user to lift the supporting foot before it reached the

back of the workspace hence limiting the space available for the next step.
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The second problem was related to the HOLD state. If the user accidentally touched

the ground, both platforms would stop moving. This can happen due to the small

workspace of the robots. Once both platforms are stopped, the users generally tend to

lift the other foot, not the one that accidentally touched the ground. Since both feet are

somewhere in the middle of the workspace, the length of the step to be taken is limited.

To solve this problem we had to allow the platforms to slide backward regardless of the

fact that the other one touched the ground, hence canceling the effect of the HOLD

state as far as simulating real life behavior goes. However, the HOLD state is still

necessary to detect the situation described above and to ignore the motion generated

by the backward motion of the platform.

6.2 Workstation Simulation Algorithm

The platform controller sends to the graphical workstation the position, orientation and

state of the two RMA robots. The simulation has to transform this information into

walking through the virtual environment.

6.2.1 Modeling Virtual Steps

The position of the RMA robots changes continuously during an exercise. However,

the position changes can be considered for generating movement in the virtual world

only for a subset of the functioning states presented above. For instance, the inevitable

change in position of a platform in STANDBY mode due to the patient shifting his

weight from one foot to the other should be ignored by the VR simulation.

At every iteration (simulation loop), the PC has to compute (based on the current

and previous data) the motion vector of each foot. There are three possible situations:

do not move either foot, move both feet independent of each other, or move one foot

by the sum of that foot’s change in position and the absolute value of the backward

translation of the other. Figure 6.3 presents the action taken by the simulation based

on the states of the two platforms.

The first case applies when both feet are on the ground, which is equivalent with
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Figure 6.3: Transforming platform motion into virtual walking.

having both feet in one of the G, P, S, L, T or H states. Although the control interface

switches the states to HOLD when both feet touch the ground, it is possible for the

simulation to receive mismatched pairs of states from the control interface because the

communication is not synchronous with the control algorithm.

The independent movement of each foot corresponds to the situation when both feet

are in the air. Since it is not possible to jump using the simulator, this case can happen

if the patient lifts both feet and remains hanging in the unweighing system’s harness.

Since both feet are in the air, their motions will be applied to the virtual avatar, but

the displacement gain will be reduced to the length of one step.

The last case is the most frequent one and occurs when one foot is in the swing

phase (FREE state) and the other is on the ground. In such case, the supporting foot

on the ground is sliding back during the TRANSLATE state. Its backward motion is

added with changed sign to the forward motion of the swinging foot doubling the length

of the virtual step.

To overcome the slow motion allowed by the simulator and increase the realism of the

simulation, in the final phase of the algorithm the calculated foot motion vector is scaled

by a gain factor that makes the virtual step distance closer to real life values. The scale

factors are different for the three Cartesian directions to counteract the dimensions of

the RMA platform workspace. The values of these gains were determined by comparing

the RMA workspace with a normal footstep, and then empirically adjusted based on

the user experience. The values of the scaling gains are shown in Table 6.2.
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Table 6.2: Virtual step scale values.
X Y Z

Linear 5.0 7.0 5.0
Angular 1.0 1.0 1.0

6.2.2 Modeling Direction Changes

By design, the Mobility Simulator does not allow the user to rotate about his body

longitudinal axis (due to the un–weighting harness the user wears). This makes it

impossible to directly measure a user’s intention to turn. The same problem was faced

by Iwata [56] in the development of the GaitMaster. Their solution relied on the

orientation of the user’s feet. The new direction of motion was calculated as the bisector

of the angle formed by the two feet. This solution yields realistic results in general but

it may be unstable when applied to patients post–stroke, who do not exhibit normal

gait. Stroke causes partial paralysis of one of the patient’s legs. Thus, the control

a patient can exert over the affected foot is limited. This can cause the foot to be

used with inconsistent yaw angles, which would throw off the bisector and hence the

direction calculation.

A more stable alternative is to always orient the viewpoint along the desired path.

This approach requires the value of the path tangent. Since the path is a polygonal

mesh, the calculation of the tangent is complex. Another possibility is orienting the

viewpoint in the direction of motion. The walking direction is initially set to a known

value that points the user along the path. The new walking direction is calculated as

the line uniting the viewpoint position last recorded when both feet were on the ground

and the current position of the viewpoint (Figure 6.4).

The viewpoint position is updated in real time while the swinging foot moves to

take a new step. A filter is applied to the new values to remove tremors in the rendered

scene. This solution works satisfactorily in most cases, but fails when the user takes a

side step.
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Figure 6.4: Walking direction calculation.

6.3 Virtual Ground Haptic Modeling

The starting point of this work has been the necessity to develop challenging and

controlled simulations of ground surfaces similar to what patients with gait disorders

would have to negotiate on a daily basis. Such surfaces require support for modeling a

patch of ice or snow on the sidewalk, a gravel–covered or muddy park path, or a puddle

of water on the road. These properties could affect either the whole surface or just

some limited areas.

6.3.1 Haptic Surface Materials

The ground surface is specified as a polygonal mesh that matches the shape of the

visual 3D geometries in the virtual environment. The physical properties of the surface

are specified using haptic materials, which are applied in layers that can be either

distinct (like ice above water) or mixed (like mud on the bottom of a lake). The

polygonal surface is unbreakable and the haptic materials can be placed on top of it in

layers. This approach insures that the foot stepping down will always be supported if

it penetrates through all the materials stacked on top of the bottom surface.

A haptic material is defined as a collection of numerical parameters describing the

physical properties of the surface. Given the requirements of an interactive virtual

reality simulation, the haptic modeling computations need to be efficient. Thus, the

model is not intended to be physically accurate but rather a good approximation of

reality. Hence, the set of variables used is limited to stiffness, damping, friction, haptic

texture and breaking coefficient.
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The stiffness and damping coefficients are used for defining the material based on

Hooke’s law. Stepping on elastic materials is not something very common, however,

the stiffness coefficient can be used to simulate Archimedes’ law if considering the foot

section constant when stepping into a liquid. The damping coefficient can be used

to simulate the slow sinking sensation of walking on a thick carpet. A low friction

coefficient can be used for simulating ice. If the foot applies horizontal forces to the

material larger than the friction coefficient, the contact will break.

The haptic texture is defined as a vibration with a given amplitude and frequency.

The breaking coefficient multiplied with the thickness of the material specifies the max-

imum force that the material can support. A haptic material is not rendered if the

applied force is larger than its breaking force. The breaking coefficient makes it easy

to simulate stepping on a thin layer of ice on top of a puddle of water.

6.3.2 Haptic Material Blending

It is a normal phenomenon for water in a puddle to mix with the earth around it and

yield mud. This type of behavior can be simulated using the haptic material with a

negligible cost to performance. Haptic materials can be mixed using an approach similar

to the blending of graphical textures. Given a set of materials and their respective

normalized ratios, the resulting new material is calculated by assigning to each of its

parameters the weighted average of the mixed materials’ corresponding parameters.

This simple blending procedure can be successfully used to address the case of two

overlapping materials such as water and earth. Although physically inaccurate, the

resulting material (mud) will have a lower damping and friction coefficients, as well as

a smoother texture than earth (lower amplitude and frequency).

Besides mixing overlapping materials, blending can be used to create new materials

in a more intuitive way. Starting with a predefined set of basic materials that can

conceivably be stepped onto when walking on a real road, one can reduce or augment

their properties by mixing them. For instance, the viscosity of mud (defined through

its damping coefficient) can be reduced by mixing it with water. The mixing ratios of a

blended material can also be negative, which will have the effect of extracting material
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from the mix. In other words, taking the earth out of the mud material will leave water.

6.3.3 Dynamic Haptic Materials

The haptic material concept can be further extended by allowing the properties to be

changed based on an external variable such as force, time, or penetration distance.

A dynamic material is defined by an initial material, a final material, an interval of

possible values for the external variable and a transform function that converts the

value of the external variable into a fraction of final material to be mixed with the

initial material. The parameters of the dynamic material for a certain value x of the

external variable is calculated as

paramA
dyn = F (x)paramA

fin + (1− F (x))paramA
ini (6.1)

The dynamic materials can be used to simulate nonlinear aspects of the surface

properties. For instance, when stepping on snow the forces applied to the foot are

initially very small. As the foot goes deeper and the snow is compressed, the forces

increase linearly until they reach saturation and are strong enough to support the foot

weight. With dynamic materials, snow can be simulated from an initial material with

low stiffness and damping coefficients and a final material with very high values for the

same parameters using the ratio of the penetration depth versus the material depth as

the external variable. The transform function would have a profile similar to the one

in Figure 6.5.

Figure 6.5: Dynamic material transform function for modeling snow.

Dynamic materials can also be used to simulate processes such as water evaporation
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or the hardening of concrete. The evaporation of water from a surface can be simulated

with water as the initial material and a dry surface as the final material. The external

variable can be the time and the transform function will be defined over the desired

period of time over which the evaporation should take place. More realistically, the

transform can specify a rate of change rather than the ratio at a certain moment, by

using as external variable the material–mixing ratio itself and as the transform the

function in Figure 6.6. Using this approach, the drying of a wet surface will take

correspondingly longer if water is spilled on it.

Figure 6.6: Using the transform function to specify the material rate of change.

6.3.4 Applying Haptic Materials to the Virtual Ground

The haptic materials are applied on the virtual ground surface with layered polygonal

patches parallel with the horizontal plane. A haptic patch is defined by a polygon, a

haptic material, bottom limit and a top limit. The material of a patch is applied on all

the points on or above the surface whose projections on the horizontal plane fall inside

the polygon and their vertical position is within the bottom and top limits of the patch.

Two types of patches have been defined to support modeling of ice, mud or water

puddles. Lining patches (Figure 6.7) are used to model surface properties that are

uniformly laid on the entire surface. Examples of such materials are ice and snow. The

bottom and top limits of a lining patch are defined along the normal to each surface

polygon in the positive direction. The filling patches (Figure 6.7) are necessary to

simulate liquid materials contained in a pocket of the surface. For this type of patches,

the bottom and top limits are measured along the vertical axis of the world, and the
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zero limit matches the lowest surface point that projects onto the patch.

Figure 6.7: Section view of haptic patch rendering: (a) lining patch; (b) filling patch.

A third type of patch is the matrix patch (Figure 6.8). It has been designed to

specify fine–grain materials that would be too costly (in cycles) to specify with the

contiguous patches defined above. The matrix patch is very similar to a graphical

texture in the fact that it is given as a grid of points within the bounding polygonal

patch. Each point of the grid is characterized by a separate material and separate

depth limits. Although more difficult to specify, this patch type allows for simulation

of circumstances such as walking through a field of rocks covered in snow or on a very

uneven mountain trail covered in leaves, without having to model the rocks as part of

the virtual ground surface.

Figure 6.8: Section view of a matrix haptic patch. Each grid point is assigned separate
material and depth limits.

The material properties for a point within a matrix patch are calculated as a gradient

of the neighboring values. Because the matrix points do not have the same vertical

boundaries, it is possible that when calculating the gradient, some neighboring points

will not have a material specification for the desired depth, in which case a default value



102

will have to be used.

6.4 Haptic Rendering for Walking Over Virtual Terrain

The Mobility Simulator transforms the input position, force and functioning mode of

each RMA platform into haptic feedback to the feet and visual update of the virtual

scene using the virtual surface specifications. The input to the simulator consists of two

sets of thirteen values, and the virtual ground data. Each set of values contains a flag

indicating the platform functioning mode, three position coordinates, three angles, three

forces and three torques, all represented in the frame of reference of the corresponding

RMA platform’s fixed base. The virtual surface specifications are pre–stored on the

graphics workstation. The haptic output data consists of two sets of values specifying

the functioning mode to be used by each platform, the 6DOF forces to be applied and

the vibrations to be applied to the user’s foot.

The processing necessary to calculate the graphics and haptic feedback can be di-

vided into several stages that are executed at every simulation cycle (Figure 6.9). Only

the swinging foot (free motion) is considered for the entire rendering process. The fixed

foot (load compensation mode) is addressed only in the last stage of the process.

The process starts by reading the feet positions and functioning modes from the

control interface. The functioning mode value is used to decide whether a foot should

be moved or not. A foot in load compensation mode is kept fixed although the platform

slides it backward.

The next stage requires the calculation of the change in real foot position to be

added to the virtual feet. Because the simulator’s workspace cannot cover the entire

range of motion of the legs, it was necessary to scale the change in each foot’s position

to increase the virtual walking velocity so that the simulation felt real. The scale is

also applied to the vertical displacement making it possible to negotiate realistic virtual

obstacles that are visually larger than the platform work envelope.

The next phase updates the positions of the virtual feet with the calculated change.

The changes are applied in a frame of reference aligned with the virtual avatar’s walking
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Figure 6.9: Haptic rendering stages.

direction calculated in the previous cycle.

After the feet have been mapped into the virtual world, the viewpoint has to be

moved accordingly. Positioning the virtual camera above the center of the segment

defined by the two feet yields good results although it is not what really happens with

the center of gravity of a walking person.

The next stage is calculating the distance between the foot and the surface. This

stage will also find the closest surface points to the foot and their corresponding poly-

gons. Similar to the real case, certain surface properties are manifested above the

surface (e.g. mud or snow) hence the distance to the surface is relevant to the haptic

feedback even if there is no collision with the underlying ground. Based on the results

of the previous stage the simulator can find the surface properties around the closest

points on the surface.

The last stage of the process is the calculation of forces and haptic effects to be

applied to the user’s foot, based on the surface properties and the depth of the collision.

6.4.1 Virtual Foot Modeling

The interaction between the virtual foot and the virtual ground surface is based on

the haptic mesh concept developed by Popescu [99] as an extension to Ho’s simpler

haptic point concept [47]. The virtual foot implemented for the Mobility Simulator is
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modeled as a mesh of points positioned on the shoe sole. From a haptic point of view,

the RMA platform can only render forces in one point. The use of a mesh of points to

calculate the interaction of the foot with the surface is necessary for realistic surface

contact calculation, and to determine the resultant force.

The number of points in the mesh should be minimized because it is directly pro-

portional to the amount of collision detection calculations, and it increases factorially

the number of contact stability calculations. The minimum number of mesh points

has been empirically chosen to be five. One point is positioned in the center of the

mesh, while the rest are positioned on a rectangle around it 6.10. The dimensions of

the rectangle match the shape of the end–effector foot attachment plate to which the

user’s foot is secured.

Figure 6.10: Foot haptic mesh.

6.4.2 Distance to Ground Surface Calculation

The virtual ground surface is the second input to the simulator besides the RMA

position/force sensor readings. Since the haptic interaction occurs at foot level, the

walking surface has to include only the ground and the obstacles. The visual geometries

with higher elevations than the maximum vertical range of the system do not need to

be added to the haptic surface.

The distance between each foot mesh point (surface distance - SD) and the ground

surface is calculated as the minimum distance between that point and each surface

polygon. The vertical distance to the surface (VSD) is also computed at this stage by

finding the surface polygon that intersects a vertical ray through the haptic interaction

point. The signs of SD or VSD are calculated based on the polygon normal. It is

important that the surface polygons be specified consistently so that their normals

point toward the walking side of the surface. For convex surfaces, the normals can

be substituted with the vertical direction. Positive distances indicate that the haptic
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point is above the surface while negative ones indicate collision with the surface. The

calculations of SD and VSD also find the closest surface point (CSP) and closest vertical

point (CVP).

The haptic patches covering each haptic point in the foot mesh are searched for in

this stage using their corresponding CSP and CVP. The SD and VSD are used to sort

out the patches that cover the haptic point but do not enclose it. If the haptic point is

under the surface, the negative distances are replaced with zero so that the search will

find the haptic material applied directly on the surface if it exists.

The SD is used with lining patches since their depth limits are aligned with the

surface normals. The VSD is used with filling and matrix patches because their depth

limits are aligned with the worlds vertical direction. For each of resulting patches, the

haptic point penetration depth is calculated along the haptic point’s direction of motion

using the SD or the VSD in accordance with the patch type.

6.4.3 Haptic Feedback

The last stage of the haptic rendering process has to translate the individual interactions

of the haptic mesh points with the virtual ground into a resultant force feedback to be

rendered on the haptic platforms. Each haptic point is characterized by the following

parameters:

• Distance from the haptic surface (SD);

• Collision status;

• List of touching haptic material patches;

• Penetration vector for each haptic patch touched.

Based on the above data, this stage calculates the force at each mesh point based

on its contact with the surface and the material patches, decides whether the foot is

making a firm contact with the surface and combines all the point forces into a resultant

6DOF force/torque to be rendered to the user’s foot.
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Haptic Contact Point Force

The forces at the haptic contact points are calculated in two steps. First, for each point,

the force applied by the interaction with the material or the surface is calculated using

the formula

F (k) = −
∑

minAffectedMaterials


Stiffness(m)PntrV ec(k, m)PntrDepth(k, m)

+

Damping(m)V elocity(k)


(6.2)

where PntrVector(k,m) is the unit penetration vector of point k inside material m.

PntrDepth(k,m) is the penetration depth of point k in material m. Velocity(k) is the

velocity of point k.

FN(k), the component of F(k) normal to the material is then compared with the

breaking force FBRK(m) of each material m calculated as the product between the

breaking coefficient and the patch depth. The depth is calculated from the haptic patch

vertical limits. If FN(k) is larger than FBrk(k), then the haptic patch is considered

broken and hence removed from the list of patches affecting the mesh point k. Finally,

F(k) is recalculated from the new reduced list of materials.

The friction coefficient FrcCoef(k) affecting each point k is calculated by averaging

the friction parameters of materials in the list. Similarly, Tex(k) the haptic texture

of point k is calculated by averaging the textures defined by the materials in the list

attached to point k. The texture of the surface and its friction can be felt also by the

supporting foot although it is not moving; hence, last operations are executed for both

feet.

Ground Contact Evaluation

When a foot touches the haptic surface on a solid region that can support its weight, the

swinging phase of the foot is over and the support phase is about to begin. The switch

between these two phases is tightly connected to the functioning of the servo–controller,

which has to be notified to start sliding the support foot backward.
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The foot/surface interaction is evaluated by comparing vertical components of the

forces applied by the materials to the haptic points with the vertical components of

the forces applied by the user’s foot to the simulator. The former are the F(k) values

calculated in the previous step, while the latter (Fext(k)) are calculated by transforming

the forces measured directly by the force sensor mounted on top of the RMA platforms.

A point k of the foot haptic mesh is ”supported” if the vertical component of F(k) +

Fext(k) is pointing upward.

The three contact possibilities that can be differentiated based on the supported

status of the haptic mesh points are presented in Table 6.3 and Figure 6.11.

Table 6.3: Contact status based on the haptic mesh point support.
Contact status Description

No contact None of the mesh points are supported
Stable Minimum three non–collinear points are supported

Unstable Remaining cases

Figure 6.11: Foot/surface contact types: (a) stable, (b) unstable.

Resultant Feedback Calculation

In the last step, the forces and torque at the foot are calculated from the haptic point

forces by translating them to the center of the mesh. The resultant force is transmitted

to the control interface to be applied to the swinging foot. If the swinging foot made a

stable contact with the surface, the controller is notified to switch the functioning mode.

The friction and surface textures are sent to the controller for both feet, regardless of

their state.
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6.4.4 Low–level Haptic Effects

The mobility simulator system is designed to execute most of the haptic calculation on

the workstation, and render the results on the Stewart platforms using a reduced set of

basic level effects:

• Apply a 6DOF force/torque;

• Change in position (positional jolt);

• Vibrations.

These low level haptic effects are extensions of the haptic effects developed for a sim-

ilar system using smaller Stewart platform robots, and designed for stroke rehabilitation

in sitting [37].

The simulation can request the controller to apply a certain force during both free

or foot support functioning modes. If the request is made while in free motion mode,

the given forces are scaled using positive values of the free mode gains and then applied.

The scaling is necessary to counteract the same damping behavior mentioned above.

The changes in position are used as an alternative force requests during foot support

mode. For instance, to simulate slipping on the ice, a lateral displacement is used

instead of applying a lateral force. This is preferred because a known displacement

is more controllable and can be adjusted to a comfortable level easier than applying

a force, which will have a different effect from one user to another, mainly due to

differences in their weight.

The vibrations are used to simulate surface textures. The frequency and amplitude

of the vibrations are calculated on the graphical workstation and sent to the controller.

The vibrations are rendered only as changes in orientation around the Y–axis (back–

front direction) because it interferes the least with the rest of the foot measurements

necessary to calculate the direction of motion, or intersection with the virtual surface.
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Chapter 7

VR Applications for Rehabilitation

The Rutgers Mobility Simulator has been designed as a rehabilitation device for pa-

tients post–stroke. Virtual reality has been used in numerous studies to increase the

motivation of the patient by making the rehabilitation therapy less tedious [103, 24].

VR can be used to simulate real life situations and hence train the patient for specific

tasks that one might encounter in activities of daily living (ADLs). The virtual exer-

cises can be specifically designed to guide the patient through the practice by setting

goals achievable through the motions necessary to recover the injured limb function.

In order to be effective, the VR rehabilitation exercises have to satisfy the following

requirements:

1. Require the patient to do the therapeutic exercises intensively and for long dura-

tions [67];

2. Be engaging and distract the patient’s attention from the monotonous and some-

times frustrating rehabilitation procedures [98];

3. Keep a high win/lose proportion to keep the patient’s attitude and motivation

positive [12];

4. Provide the patients with performance feedback to keep them informed about

their progress and hence getting them more involved in the process [12].

The most challenging part of designing a VR rehabilitation game is satisfying the

therapy requirements and making the game interesting and engaging. The rehabili-

tation therapy, and especially the post–stroke therapy, relies on repeatedly executing

the same motions a large number of times. According to the National Institute and

Neurological Disorders and Stroke [86], the repetitive use of the impaired limbs helps

reduce disabilities by encouraging the creation of new neurological pathways (“brain
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plasticity”) that can handle the exercised motions. Kwakkel [67] showed that there

exists a small but statistically significant effect of the therapy intensity on the efficacy

of the rehabilitation.

Two virtual reality exercises were created for the Mobility Simulator. The exercises

were designed by Burdea, Deutsch, Boian, and Kourtev. The implementation of the

exercises was done by Boian and Kourtev [15].

One of the exercises was the simulation of a walk on a park alley (see Figure 7.1).

The shape of the alley can be customized to train turning. In addition, obstacles can

be placed on the path and the ground surface conditions can be changed.

Figure 7.1: Park walk exercise for gait training.

While the park walk simulation targets directly gait training, the second simulation

is designed to train the patient to negotiate with a very common ADL, crossing the

street in time, before the pedestrian light turns red.

7.1 Street Crossing Exercise

Crossing a virtual street is the first VE exercise developed for the mobility simulator

described here. The patient’s task is to cross the street while the pedestrian light

is green. This VE was designed to combine important requirements of community

ambulation, which include gait speed and the negotiation of uneven surfaces (curbs).

The parameters required for walking in complex virtual environments were modeled
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on the framework presented by Patla [93, 94] and the task taxonomy presented by

Gentile [40]. For example, perturbations in this environment can be added to increase

the attentional demands of the patient, such as introducing vehicles that encroach on

the crosswalk, blow horns, etc [13]. Ambient conditions can be altered by changing the

time of day and the seasons. Traffic level is increased by adding vehicles or pedestrians.

Task complexity is adjusted to patient’s abilities to maintain engagement and reduce

frustration.

The application window (Figure 7.2) is divided into three areas: the 3D virtual

environment, the control panel and the 2D therapist feedback panel. The virtual en-

vironment occupies the large central portion of the screen and consists of a dynamic

street model containing two sidewalks, driving lanes, stoplights, pedestrian lights and

intelligent vehicles. The difficulty of the exercise can be adjusted through a number of

configuration parameters that define it. These parameters have been chosen to allow

setting the distance and speed at which the patient has to walk as well as changing

the virtual world’s appearance by season, time of day, or type of community. All the

parameters are set by the therapist prior to the exercise session and a subset of them

can be modified while the patient is exercising as well.

7.1.1 Configuration Parameters of the Simulation

The main parameter of the simulation, based on which the success of each tasks is

decided, is the patient’s average speed required to cross the street. The speed parameter

is a percentage between the normal and maximum walking speed the patient can achieve

on the simulator. A baseline of these values is obtained daily at the beginning of the

therapy session.

The width of the street is defined prior to the exercise start by specifying the number

of lanes the street should have. While this affects the distance the patient has to walk to

reach the other side of the street, it also triggers a change in the street’s appearance. One

or two lane streets cause the building textures populating the back of the scene to show

houses resembling a suburban setting (Figure 7.3). Streets with more than two lanes

make the environment have an urban look by displaying city buildings (Figure 7.2). This
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Figure 7.2: Street crossing exercise. Normal road surface in an urban environment.

parameter cannot be changed at run–time. From the speed parameter and the width of

the street, the simulation automatically calculates the duration of the pedestrian green

light. A flashing red light signals to patient that the time to cross the street is running

out. In case pedestrians are caught in the street by the red pedestrian light, the cars

in the same lane will wait for them to cross while the vehicles in the other lanes will

continue driving until pedestrians step into their lane.

The behavior of the vehicles can be set as a percentage between “well behaved and

aggressive”. Aggressive vehicles will accelerate faster, drive at higher speeds and brake

later. They will also behave impatiently when forced to stop; when stopped at the red

light, they will slowly inch on the pedestrian crossing. Vehicles will sounds their horns

when pedestrians are caught in the middle of the street, during a pedestrian red light.

The sidewalk curb height and shape are also configurable. In real settings, the

shape of the sidewalk edge can be either a curb or it can be sloped to accommodate

wheelchairs. The same situations are supported by the simulation both visually and
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Figure 7.3: Street crossing exercise. Icy patch in suburban road setting.

with haptic feedback. By adjusting these two parameters, the therapist controls the

difficulty of the transition from the sidewalk to the road surface. A higher sidewalk can

mean either a higher curb or a steeper slope. The curb height is defined as a percentage

of the maximum height that can be rendered by the Rutgers Mega–Ankle robots. This

feature can be changed at run–time from its current value if the patient is unable to

climb the opposite sidewalk, unlike real environments.

Changing the lighting of the virtual world makes elements of the street more or

less obvious, thus adjusting the difficulty of the task. The parameter controlling this

aspect is a percentage between a minimum and maximum lighting level. Changes in

the lighting level also require changes in the building and sky textures. Because the

images used as textures were created during a certain time of the day, they may not

match the world’s lighting level, by showing a sun lit house in a dark environment. To

solve this problem, multiple copies of each texture have been created by manipulating

the luminosity. The value of the lighting level causes the building and texture images

to be switched to lighter or darker versions.

The surface condition parameter is used to define the haptic feedback applied to

the patient’s feet. Possible settings are ice, mud, gravel, or normal. Since the surface

conditions are mostly determined by the weather, this parameter also triggers changes

in the visual aspect of the scene. An icy surface will cause the scene to switch to a
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winter look by applying different house and walking surface texture images (Figure 7.3).

The gravel and normal surfaces will trigger a summer scene setup. The muddy surface

will darken the scene as to simulate a rainy day (Figure 7.4).

The difficulty of surface conditions can be set on a scale from 0 to 100. The difficulty

of a surface property is defined separately for each type of surface:

• Ice: higher difficulty level equivalent with lower friction (the ice is more slippery);

• Mud: higher difficulty level equivalent with a larger damping coefficient (the mud

is more sticky);

• Gravel: higher difficulty level equivalent with larger amplitude vibrations when

stepping on the surface.

Figure 7.4: Street crossing exercise. Muddy road in a nighttime urban environment.

Finally, the pedestrian crossing can be configured to be a zebra–type crossing or

a pelican–type crossing (two lines bordering the cross walk strip). The zebra crossing

provides a greater degree of visual contrast, which may make crossing easier.

7.1.2 Off–line Session Configuration

The number of parameters defining an exercise is large, and the duration of one exercise

(one street crossing) is less than a minute. Anticipating that the amount of practice

and repetition on this task may need to be considerably longer, the simulation can
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run a series of street configurations set by the therapist prior to the rehabilitation

session. Each configuration can be named and the therapist can specify the number

of trials (i.e. street crossings) to be used. At the end of each trial, the patient is

provided with knowledge of results about the success of crossing, and if necessary, the

street is reconfigured to match the next settings. After that, the patient’s viewpoint is

repositioned on the starting side of the street and the next trial is ready to begin. Using

this mechanism, the therapist can plan a complete intervention session with a sequence

of simulations and then monitor the patient’s performance and adjust the parameters

as required.

7.1.3 Run–time Control

Certain configuration parameters can be adjusted while the patient is exercising through

the GUI control panel at the bottom of the application window (shown in Figure 7.5).

Percentage parameters such as patient speed level, ambient lighting level, vehicle be-

havior and curb height are changed using sliders. Buttons are provided for changing

on/off parameters such as ignoring the patient’s change in walking direction, or dis-

abling the ground surface haptic effects. Such settings are useful in the early phases

of training on the simulator, when the patient and the therapist may need to adjust

several parameters to achieve the best frequency, duration and intensity of training.

Figure 7.5: Street crossing simulation control panel [13].

Four more buttons are provided to allow the therapist to change the flow of the

session. The EXIT button ends the session, while the PAUSE/RESUME button can

be used for giving the patient a resting break. The NEXT button is used to skip to the

next preconfigured trial. This can be used to shorten the current therapy session if the

patient shows signs of fatigue. The placement and appearance of the controls presented

above has been optimized based on the study done by Whitworth and Deutsch [117, 34]

on the visual interface of the ankle in sitting system (see Appendix B).
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7.1.4 Performance Real–Time Feedback

The third area of the application window is a GUI 2D panel displaying session and

patient information intended for the therapist (see Figure 7.6). The patient’s instanta-

neous and average speeds are displayed in relation to the trial’s target street crossing

speed and the baselined normal and maximum speeds. The instantaneous speed is

measured over the short time intervals between two sensor readings. The average speed

is calculated dividing the distance walked by the patient by the time elapsed since the

light turned green. The patient’s measured speed is displayed as a scaled bar graph

on which the three reference values (trial’s target street crossing speed, baseline nor-

mal speed, and baseline maximum speed) are marked with thin vertical bars. The bar

graphs switch color from red to green as the their value exceeds the corresponding set

target. Adjacent to the speed bar graphs the number of steps taken by the patient is

displayed during the current street crossing simulation.

The session progress versus the preconfigured setup is displayed by showing a list

of configuration names followed by the number of trials completed and the number of

trials that have to be executed for that particular configuration.

Figure 7.6: Street crossing simulation 2D feedback panel [13].
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Chapter 8

Mobility Simulator Validation

The mobility simulator has been evaluated over three criteria: comparison with existing

art, robot behavior during gait, and comparison between normal gait and gait on the

simulator. To assess the system’s value as a research project it was compared to the

state of the art technology in gait rehabilitation. The behavior of the RMA robots

was evaluated for three specific gait aspects in comparison with the real life situations.

These aspects are: the behavior of the RMA robots when the virtual foot touches the

virtual ground, the stability of the support foot during the backward translation phase,

and the trajectory of the swinging foot. Finally, a full gait comparison was performed

between walking on the simulator and normal walking.

8.1 Comparison with the Lokomat Orthosis

One of the most active research projects for developing a mobility training robotic device

is the Lokomat r© system developed at the AI Lab of the University of Zurich [28, 29].

The system targets the rehabilitation of paralyzed persons. Figure 8.1 presents the

Lokomat r© system and how it is used by the patient. The main components are a

treadmill, an unweighing frame and an active orthosis. The patient is suspended in the

unweighing frame and the orthosis is attached to the legs. The orthosis aids the patient

to move the feet on the treadmill.

This system is very appropriate for paraplegic rehabilitation but its application to

post stroke rehabilitation because it constrains the motion of the patient. The orthosis

fully restrains the lower body of the patient reducing or canceling some gait degrees of

freedom.

The Rutgers Mobility simulator is smaller than the Lokomat r© system mainly be-

cause it does not use a treadmill. The unweighing frame makes the size of the two

systems vertically comparable. The Rutgers system brings a series of advantages when
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Figure 8.1: The Lokomat r© gait orthosis. From the Automatic Control Laboratory,
Swiss Federal Institute of Technology (ETH), Zurich, Switzerland.

compared with the features of the Lokomat r© System.

1. It provides individual foot 6DOF feedback that can be customized to simulate

walking on various surfaces the patient is likely to encounter in ADLs.

2. It is less encumbering. The Rutgers simulator does not constrain the motions of

the legs except at ankle level. While the flexing joint range is reduced by the

workspace of the platforms, the rotational range of the joints is not limited. The

torso is suspended in an unweighing vest similar to Lokomat r©.

3. The Rutgers system is integrated with VR simulations that engage and motivate

the patient, while training him or her for real life tasks.

4. The Rutgers system is integrated with a full framework for data collection and

analysis and remote monitoring that allows the therapist control and evaluate the

therapy without the need to be present in the same location.
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8.2 Comparison with the Robomedica BWS System

The Robomedica Body Weight Support (BWS) system (Robomedica Inc., Irvine, CA) is

a commercially available installation designed for gait rehabilitation of various patient

populations (see Figure 8.2). The system consists of a treadmill installed under a

pneumatic unweighing arm. The patient, secured in the unweighing vest walks on

the treadmill while using the sidebars for balance. Two chairs are positioned by the

treadmill, one on each side, lowered at a level with the patient’s foot. Two therapists,

sitting on these chairs assist the patient into moving the feet. A computer connected

to the system monitors the patient’s body weight unloading and adjusts it to reduce or

increase the ground reaction force when stepping down.

Figure 8.2: The Robomedica BWS System. From Robomedica Inc.

The BWS system provides an ergonomic setup that makes the gait rehabilitation

procedures more comfortable for both patient and therapist. However, it does not

bring significant innovations to the classical procedures. The use of the BWS System is
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comparable in time and personnel costs with the existing gait rehabilitation procedures.

In comparison, the Rutgers Mobility Simulator applies robotics and virtual environ-

ments to enriching the patient experience while saving the therapist the physical effort

necessary to move the patient’s feet. The independent 6DOF feedback to each foot pro-

vided by the Rutgers system supports a wide variety of walking surfaces. The Rutgers

system also reduces the cost of the therapy by reducing the number of therapists in the

room.

8.3 Behavior at Foot Contact with the Ground

When the virtual foot is touching the virtual surface, the RMA platforms are com-

manded to hold the position. It is important that the platforms are able to hold that

position rigidly simulating the resistance of the ground. A less stable support would be

perceived by the user as unnatural. The stabilization of the platforms under the user’s

load was the most difficult problem in the development of the system. The fact that

the robots are used closed to the limit of the load range made the problem even more

difficult. The change in platform position was measured during the user’s step down.

The recorded data are presented in Figures 8.3 and 8.4.

Figure 8.3: Changes in the position of the RMA robot when the user’s steps down.

The vertical position (Z–axis) increases during the switch from free mode to support

mode by approximately 2 mm. The change is small enough not to be sensed by the
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Figure 8.4: Changes in the orientation of the RMA robot when the user’s steps down.

user. The cause of the change is the tuning of the controller to react promptly to

disturbances. A change of approximately 0.03radians = 1.7deg is also visible around

the Y–axis and Z–axis.

One disadvantage of the Mobility simulator is that the foot cannot be flexed as in

real walking. During the touch down phase, the foot normally steps down with the

heel and then the toes reach the ground. The RMA robots limit this motion because

it usually takes place at the edge of the workspace where the orientational flexibility is

minimal. Hence, the touch down phase of the gait is done with a flat foot.

8.4 Support Foot Stability during the Backward Translation Phase

Another interesting aspect of the simulator is the stability of the backward motion of

the support foot. The change in position of one RMA robot has been measured and

the results are presented in Figures 8.5 and 8.6. The major changes in position occur

along the Y–axis and around the X–axis. The Y–axis position change is the actual

translation of the foot and it is normal. It should be noted that the translation is

smooth and without irregularities. The X–axis orientation corresponds to the pitch

motion. The orientation of the foot is slightly upward at the beginning of the support

phase and slightly downward towards the end, right before it gets ready to take another

step.



122

Figure 8.5: Variation in the position of the RMA robot while sliding the support foot
backward.

The same flat foot problem applies to this situation too. When lifting the foot off

the ground, the toes are normally flexed. The Mobility Simulator does not support the

motion in the current version, although mechanical changes could be implemented to

allow a less constraining foot attachment.

8.5 Swing Foot Forces and Trajectory

During the swing phase of the gait, the RMA platform is required to follow the motion

of the foot while compensating for its own weight and for the forces applied by the

user. This task required careful calibration to overcome the impedance created by the

air pressure control and the delay caused by the force change bandwidth. The forces

recorded during this phase have been presented in section 5.3.5. An important aspect

of the swinging phase is the trajectory of the foot. Figure 8.7 presents the recorded

position and Figure 8.8 the orientation values of the RMA robot.

The motion is characterized primarily by the reduced range, which is a consequence

of the RMA’s limited workspace. The motion is however smooth and follows a curve

similar to that of a regular foot during walking. The changes in orientation are larger

in this case than in the two situations discussed above, but that is normal given the

“free” aspect of the motion.
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Figure 8.6: Variation in the orientation of the RMA robot while sliding the support
foot backward.

Figure 8.7: Trajectory of the swinging foot when using the Rutgers Mobility Simulator.

8.6 Comparison with Over–ground Walking

The final evaluation of the system was a comparison between the user’s gait while on

the simulator and the normal gait of the person. The study was designed by the Lewis

and Deutsch (RiVERS Lab, UMDNJ) and was implemented in collaboration with The

Human Machine Interface Lab at Rutgers. These results have been received from Lewis

through personal communication, during his work on a special problem project.
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Figure 8.8: Angular trajectory of the swinging foot when using the Rutgers Mobility
Simulator.

8.6.1 Experimental Setup

The validation experiment used a GAITRite Sensing mat to record the walking param-

eters of normal walking in three healthy subjects. Each subject then used the Mobility

Simulator to cross a virtual street over a distance of twenty steps. The simulator walk-

ing was done with the street crossing simulation initially off, then turned on. A third

case was configuration was with the simulation on but with the viewpoint decoupled

from the virtual avatar. In the last case, the user would see the virtual world from a

fix point and watch the avatar cross the street.

Optical markers were attached to the user’s body while the simulator was used

and the entire procedure was recorded on a video camera. The video recording was

synchronized with the simulator’s data collection routine in order to match the digital

readings with the gait phases calculated from the video recording.

8.6.2 Measured Parameters

The measured parameters are divided into two groups: temporal parameters and kine-

matic parameters. The temporal parameters describe the duration of various gait



125

phases, while the kinematic parameters describe the angles lower body and lower ex-

tremities during gait. The temporal parameters and the positional kinematic parame-

ters were measured for each patient during normal gait using the GAITRite mat and

while using the Mobility Simulator. The angular kinematic parameters were measured

only for the Mobility Simulator using the video recording. Tables 8.1 and 8.2 list the

measured parameters and their descriptions.

Table 8.1: Gait temporal parameters.
Parameter Description
Swing time The duration of the gait swing phase. During

the swing phases the foot moves freely above the
ground [105]

Stride time The duration of a stride. A stride consists of two
consecutive steps. During one stride each foot goes
through the support and swing phases [105, 33].

Cadence The cadence is number of steps the person walk in a
minute

Table 8.2: Gait kinematic parameters.
Parameter Description
Step length The distance between the two feet during the double

limb support phase of gait. The length of the steps
can differ depending on which foot is supporting in
which is swinging.

Stride length The length of one stride
Velocity The walking velocity
Hip angle The angle of the hip joint measured between three

sensors: one placed on the body above the hip, one
placed on the hip joint and the third placed on the
knee joint.

Knee angle Knee joint angle
Ankle angle Ankle joint angle

All the angular parameters measurements use as reference the angles of the joints

in neutral position (standing). The normal values of the joint angles in standing are

presented in table 8.3. These values were subtracted from the angles measured using

the video camera recording. The resulting angles show the differences between normal

gait angles and the angles achieved when using the Mobility Simulator.
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Table 8.3: Normal neutral hip, knee and ankle angles in neutral position.
Hip Knee Ankle

119 deg 159 deg 107 deg

8.6.3 Results

Subject 1

The measurements performed for Subject 1 are shown in Tables 8.4, 8.5, and 8.6. Each

table presents side by side, the measurements in four different conditions: during normal

walking as measured by GAITRite (Table 8.4) or as given by normative measurements

(Tables 8.5 and 8.6), while using the simulator without the VR simulation displayed

in front of the subject, with the VR simulation displayed, or with the VR simulation

displayed but with the viewpoint not mapped to the user motions.

As expected, when compared to normal walking the gait on the simulator is much

slower. From Table 8.4 it is visible that the swing duration on the simulator is between

59% and 77% longer than for normal walking. The stride duration is 90% to 102%

longer than normal walking. The ratio difference between swing time and stride time

point to a longer double limb support on the simulator. The reduced RMA robot

workspace causes the steps and strides taken on the simulator to be between 78% and

80% shorter than normal steps. The walking velocity is between 88% and 90% slower

on the simulator. These results were expected from the beginning because of the small

RMA workspace. The walking on the simulator is intended to be a slow short–step

walking, which is naturally slower than normal walking.

Table 8.4: Subject 1: Temporal and linear kinematic measurements.
GAITRite Simulator

without VR
Simulator
with VR

Simulator with VR
(static viewpoint)

Swing time 0.406 sec 0.674 sec 0.722 sec 0.705 sec
Stride time 1.066 sec 2.161 sec 2.026 sec 2.044 sec
Cadence 112.2

steps/min
55.6 steps/min 59.4 steps/min 58.54 steps/min

Step length 0.821 m 0.162 m 0.176 m 0.173 m
Stride
length

1.645 m 0.321 m 0.352 m 0.342 m

Velocity 1.538 m/sec 0.150 m/sec 0.174 m/sec 0.168 m/sec
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An interesting aspect is the comparison between the simulator walking with and

without a VR simulation displayed on the screen. The situation where the simulation

is displayed but the viewpoint is not updated lies in between the values of the previous

two cases. When the VR world is not visible, the subject tended to watch her feet

during walking, or to watch her reflection in the large screen display in front of her.

Anecdotally, the first time the simulator was used for walking, it became apparent that

watching the feet while walking caused awkward motions. The presence of the virtual

world removes the need to watch the feet, leaving the walking to be control by the

other senses. As a result, the swing time is 6% shorter when the virtual environment is

displayed. The stride time however is 6% shorter, which means the subject spent less

time standing on both feet. With the simulation on, the step length increased by 8%

and the stride length by 9%. The increase in velocity was 13%.

The angles of the hip, knee and ankle joints when the foot is lifted off the ground are

shown in Table 8.5. The hip angles differ on the simulator by less than 5 deg from the

normal gait, while the knee angles differ by less than 10 deg. The differences are caused

by the short step walking, which does not allow the foot to extend backward properly.

The ankle angle is significantly different between normal and simulator walking. This

is caused mainly by the limitations of the RMA rotational workspace. Although in

the center of the workspace, the platform can reach the necessary orientation, at the

periphery of the workspace the angular workspaces is drastically reduced.

Table 8.5: Subject 1: Joint angle measurements at the beginning of the swing phase is
about to break contact with the ground.

Normal Simulator
without VR

Simulator
with VR

Simulator with VR
(static viewpoint)

Hip angle 0 deg 4.5 deg 4.33 deg 5 deg
Knee angle 40 deg 30.66 deg 32.5 deg 31.66 deg
Ankle angle 20 deg -14.16 deg -16 deg -15.33 deg

Table 8.6 presents the lower limb angles when the foot touches the ground. In

this case, the knee and ankle values are close to the normal gait. The hip angle is

significantly smaller than expected. During normal walking, the swing foot lands far

ahead of the body causing the 30 degree angle shown in Table 8.6. The short workspace
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of the RMA robots does not allow for such long steps, hence the difference in hip angle.

Table 8.6: Subject 1: Joint angle measurements at the end of the swing phase when
the foot touches the ground.

Normal Simulator
without VR

Simulator
with VR

Simulator with VR
(static viewpoint)

Hip angle 30 deg 2.5 deg 3.33 deg 4 deg
Knee angle 0 deg 3.16 deg 3.83 deg 3 deg
Ankle angle 0 deg -3.33 deg -4.83 deg -3.33 deg

Subject 2

The measurements performed for Subject 2 are shown in Tables 8.7, 8.8, and 8.9. The

patterns present in the first subject’s data are visible with certain differences in the

second subject’s data as well. When using the simulator the swing time is between 62%

and 104% longer than during normal walking. The stride duration was also longer by

37% to 47%. The larger difference in swing time means that the double leg support

time when using the simulator is shorter than when walking normally. The changes

in the step length are between 79% and 80%, while the differences in stride length

are between 73% and 75%. The walking velocity on the simulator is slower by 83% to

86%. These results are consistent with the parameters of a short–step and slow walking.

The interesting walking pattern in this subject’s data is the very short ground contact

with both feet. This could be an effect of the unweighing system. The percentage of

supported weight it is a parameter still to be tuned. If too much weight is supported,

then the subject can essentially keep both feet in the air for the short amount of time

it takes the suspending chord to extend and lower the user.

The performance improvements while immersed in the VR simulation noticed for

the first subject are found in the second subject’s data as well. The step length and the

stride length increased by 9% while the virtual environment was displayed in front of

the subject, while the velocity increased by 15%. Subject 2 also presents performance

differences between the VR simulation with and without the viewpoint coupled to

walking. Interestingly without the viewpoint coupled to the motion, the performance

values are lower than those recorded when the VR scene was not displayed at all.
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Table 8.7: Subject 2: Temporal and linear kinematic measurements.
GAITRite Simulator

without VR
Simulator
with VR

Simulator with VR
(static viewpoint)

Swing time 0.486 sec 0.786 sec 0.995 sec 0.818 sec
Stride time 1.280 sec 1.845 sec 1.748 sec 1.889 sec
Cadence 93.43

steps/min
65.16
steps/min

68.89
steps/min

63.31 steps/min

Step length 0.863 m 0.183 m 0.199 m 0.177 m
Stride
length

1.456 m 0.369 m 0.401 m 0.358 m

Velocity 1.347 m/sec 0.199 m/sec 0.229 m/sec 0.187 m/sec

As discussed for Subject 1, the differences in hip and ankle joint angles are mainly

caused by the reduced robot workspace. The data shown in Tables 8.8 and 8.9 shows

significant differences from the normal angles, in the ankle lift–up angle and the hip

touchdown angle. The knee angles are with 14 degrees difference from the normal angles

Table 8.8: Subject 2: Joint angle measurements at the beginning of the swing phase is
about to break contact with the ground.

Normal Simulator
without VR

Simulator
with VR

Simulator with VR
(static viewpoint)

Hip angle 0 deg -3.06 deg 0.6 deg 2.6 deg
Knee angle 40 deg 26.8 deg 31.13 deg 31.8 deg
Ankle angle 20 deg -15.46 deg -16.63 deg -14.13 deg

Table 8.9: Subject 2: Joint angle measurements at the end of the swing phase when
the foot touches the ground.

Normal Simulator
without VR

Simulator
with VR

Simulator with VR
(static viewpoint)

Hip angle 30 deg -4.9 deg -4.4 deg -6.73 deg
Knee angle 0 deg 3.8 deg 6.96 deg 2.8 deg
Ankle angle 0 deg -0.3 deg 2.36 deg -0.46 deg

Subject 3

The measurements performed for Subject 3 are shown in Tables 8.10, 8.11, and 8.12.

The gait patterns displayed by the third subject when using the simulator are consistent

with the results of the previous two subjects. The measurements show an increase in

the swing duration of 72% to 134%. The increase in stride duration is between 94% and
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159%. The step and stride lengths are shorter than normal walking by 74% to 78%, and

the velocity is lower by 88% to 90%. The measurements of Subject 3 are similar with

the results of the other two subjects, but there is a noticeable percentage increase in

the swing and stride duration and a larger percentage decrease in the walking velocity

when using the simulator. Among the reasons for this behavior is the height of Subject

3, who was shorter than the other subjects were. Being shorter, the subject was affected

more by the lateral distance between the two platforms of the simulator. Therefore, the

difference gait while on the simulator was larger for this subject than for the others.

The effect of the VR simulation on performance is evident for this subject too. The

swing and stride durations were reduced 35%, respectively 33% when using the VR

simulation. The velocity while immersed in the virtual environment increased by 14%.

Table 8.10: Subject 3: Temporal and linear kinematic measurements.
GAITRite Simulator

without VR
Simulator
with VR

Simulator with VR
(static viewpoint)

Swing time 0.399 sec 0.935 sec 0.689 sec 0.767 sec
Stride time 1.02 sec 2.642 sec 1.987 sec 2.185 sec
Cadence 117.73

steps/min
45.51
steps/min

60.81
steps/min

55.06 steps/min

Step length 0.752 m 0.194 m 0.165 m 0.186 m
Stride
length

1.509 m 0.389 m 0.331 m 0.374 m

Velocity 1.479 m/sec 0.147 m/sec 0.168 m/sec 0.171 m/sec

The lift–up and touchdown angles of knee are very close to the normal values for

Subject 3. The touchdown ankle angle and the hip angles for both situations are larger

and respectively lower than the normal values, which is similar to the behavior of

subjects 1 and 2. A notable difference is in the touchdown ankle angle, which is larger

than normal, where as the other subjects presented values close to the normal neutral

position.

8.6.4 Gait Comparison Conclusions

For all subjects, the walking velocity on the simulator was approximately a fifth of

the normal walking velocity. The step lengths were shorter being constrained by the
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Table 8.11: Subject 3: Joint angle measurements at the beginning of the swing phase
is about to break contact with the ground.

Normal Simulator
without VR

Simulator
with VR

Simulator with VR
(static viewpoint)

Hip angle 0 deg 16.16 deg 6.83 deg 6.16 deg
Knee angle 40 deg 40 deg 37.16 deg 40 deg
Ankle angle 20 deg -11.33 deg -13.66 deg -13.33 deg

Table 8.12: Subject 3: Joint angle measurements at the end of the swing phase when
the foot touches the ground.

Normal Simulator
without VR

Simulator
with VR

Simulator with VR
(static viewpoint)

Hip angle 30 deg 12 deg 8.83 deg 6.5 deg
Knee angle 0 deg 0.16 deg -0.66 deg -3.33 deg
Ankle angle 0 deg 17.33 deg 17 deg 16.66 deg

workspace of the RMA robots. The joint angles measured during walking differ between

the normal and simulator walking at hip level during touchdown due to the short

forward displacement of the leg imposed by the robots, and at ankle level during lift–

up due to the reduce orientational workspace of the RMA robots at the edge of the

positional workspace.

The results presented in the previous sections show that the presence of the virtual

environment in front of the user can change the gait of the user bringing it closer to

the natural motions. This is mainly caused by the “vision capture” phenomenon that

removes the user’s focus from their own body, allowing it to be controlled by reflexes

rather than by a conscientiously controlled feedback loop. The improvements related

with the presence of the virtual reality simulation were visible in the length of the steps

and the walking velocity, which was increased by 8% to 14% compared with the velocity

achieved without VR.

The validation tests also pointed a few system parameters that need to be tuned

for each user. The amount of body weight supported by the frame proved to be an

important factor that can cause unnatural gait by making the body too light. The

height of the user is also an aspect that has to be taken into account. The shorter the

user the more he or she will be affected by the lateral distance between the platforms.

In the current stage of the system, this aspect can be improved only by giving the user
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more time to get accustomed to the system.
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Chapter 9

Remote Real–Time Monitoring and Therapy Control

The real–time remote monitoring feature was added to the telerehabilitation framework

in the third version of the software. The need for such a tool arose during full day

patient trials for the hand and ankle system that required a number of researchers and

therapists to be present in the same room with the patients to watch and coordinate the

flow of the therapy. After the first weeks of trials, it was apparent that their involvement

could be just as effective from a remote location if they could see and interact with the

patients and their exercises in real–time. Such an approach would have saved time for

the therapists and researchers involved in the study.

Existing approaches for solving this problem involved the use of video conferencing.

Although mature at the time, the teleconferencing tools did not allow the therapist to

watch directly the patient’s activity but also the exercises displayed in front of them by

the graphical workstation. Pointing the camera to the screen yielded faded and noisy

images unusable to watch the VR exercises in action. In addition, the camera had to

be continuously moving from focusing on the screen to focusing on the patient.

The remote monitor solved this problem by bringing the activity of the virtual pa-

tient in front of the remotely located therapist. Simplified mock–ups of the VR exercises

are displayed on the therapist’s computer and synchronized with the rehabilitation side

activity.

The initial monitoring implementation was aimed only for the post–stroke reha-

bilitation exercises for the hand (see Appendix B). The monitoring applet shown in

Figure 9.1 displayed a simplified hand model optimized for fast rendering, and infor-

mation about the progression of the rehabilitation session. The positions of the virtual

fingers were updated based on datasets sent by the rehabilitation application.

The VR exercises collect and evaluate data in real–time. The rate of the data thread

has to be as constant as possible for filtering purposes. To avoid interfering with this
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Figure 9.1: Initial hand rehabilitation monitoring applet [97].

balance, which was tuned to work with the intense graphics part of the exercises, the

VR simulation stream out the data packets to a server running on the same computer

as a different process or on a remote computer. Any number of monitoring clients could

connect to the server without affecting the performance of the VR simulation. This

implementation was tested and the conclusions pointed to the need for improvements

in the data transmission approach and the visual aspect of the monitoring applet.

The graphical improvements for the monitoring applet required the implementation

of simplified mockups of each exercise in the rehabilitation system, so that the therapist

could get a closer feel of the user’s experience and better understand his or her reactions

during the therapy session. In addition to this feedback, a video conferencing tool was

also added to the system to bring to the remote therapist direct visual feedback of

the patient’s motions, facial expression and verbal comments. Figure 9.2 shows the

mockup developed by Lewis for the hand strength exercise as part of his thesis research

work [70, 71].

The main issue with the data transmission was the location of the server. While

the trials were run in the RiVERS laboratory of the University of Medicine and Den-

tistry in Newark, NJ, the server was running on a machine 35 miles away, at Rutgers

in Piscataway, NJ. This was a good setup for somebody monitoring the therapy from
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Figure 9.2: Monitoring applet mockup of the post–stroke finger strength exercise [2].

Piscataway, but for the researchers testing the system in Newark, the data was un-

necessarily delayed by first being sent to the server in Piscataway and then back to

Newark to the monitoring applet. Moving the server on a computer in Newark would

have solved the problem for the UMDNJ staff, but worsen the condition for those in

Piscataway. The responsiveness of the system was affected by the surprisingly slow

and unstable Internet connection available between the two universities. The current

chapter presents the new architecture of the data transfer service and the additional

tasks that it has to accomplish.

9.1 Distributed Virtual Environments

As a result of advancements in the communication hardware and software performance,

network–based collaboration is a very active area of research. The possibility of meeting

and working together with other persons without the necessity of being at the same

physical location brings the major benefit of making such events convenient and less

costly without losing efficiency. Virtual environments are an ideal candidate for such

collaborations, either in a pure 3D graphic form or augmented with inserts of real–life

video streaming, or instrumented with force and touch feedback devices.
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The most popular distributed virtual environments today come from the on–line

gaming companies. A more practical application is the collaboration between inter-

national experts on the design of a building [75] or any other CAD project. A more

challenging application is remote force feedback cooperation. This is a very sensitive

area due to the haptic device stability concerns due network delay and jitter.

These examples require collaborative or cooperative type of interaction between

the users involved. One major issue in such environments is keeping the virtual en-

vironment consistent on all parties’ display. This requires implementing a distributed

synchronization scheme [76, 108], whose correctness usually has to be balanced with

the performance of the system. In some cases, the synchronization algorithm is greatly

simplified by allowing only two users to interact at one time. An example of such ap-

plication is Popescu’s shared virtual rehabilitation room with force feedback [98]. In

the case of the distributed games, the synchronization is usually done by a dedicated

server that manages an instance of the game, accepting up to a certain number of

simultaneous users.

9.2 The Remote Monitoring Application as a Distributed VE

The remote monitoring system presented here is a simplified version of a distributed

virtual environment. It does not require direct interaction between the two users in the

virtual environment. The patient at one end has full control of the VR game, while

the therapist at the other end only watches the VR scene and possibly changes some

simulation parameters. Although both parties modify aspects of the simulation, they

work in isolated spaces. The patient is concerned only with the virtual side of the

exercise while the therapist has control only over the underlying configuration. This

approach reduces the problems raised by conventional shared distributed VEs in that

it doesn’t require a complex synchronization mechanism.
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9.3 Monitoring Service Architecture

The new design of the data transfer service uses multiple server nodes (forwarding

nodes) running in various geographical locations. These nodes are organized into a

multicast overlay network where each node becomes a source of data if a VR application

connects to it. The data streamed by the VR exercise is multicast by the source node to

the rest of the server nodes in the network. A remote monitoring client then connects to

one of the server nodes (selected by the response delay and age of the data) and requests

data streaming for one or more patients. Besides monitoring, the remote therapist also

needs to be able to control and direct the rehabilitation session. To facilitate such a

feature, each rehabilitation session is required to have a local server running in the

background. This server would be responsible for taking the data from the simulation

and multicasting it to the rest of the nodes and transmit to the simulation or change

configuration files on the local hard drive upon request from the remote therapist.

Figure 9.3 shows a schematic view of the monitoring network structure.

Figure 9.3: Monitoring network structure. The shaded area encloses LAN connections,
while the rest of the connections are WAN.

The monitoring network is composed of three types of nodes: server, monitor, and
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VR simulation. The server node connects the entire overlay network together. It is

responsible for handling the requests of all the other types of nodes. The monitor node

is used by the therapist to connect to the overlay network and watch the activity of

one or more patients or adjust their rehabilitation sessions based on their performance.

The VR simulation node is practically any of the VR rehabilitation exercises. Such a

node only streams out the data collected by the sensors during therapy and receives

run–time parameter change commands forwarded through the local server node from a

remote monitor node.

One of the server nodes is designated as hub and serves as rendezvous point for all

the new servers or monitor nodes that enter the network. A VR simulation node is not

registered with the hub directly, but only with the local server node.

Another special server node is the DB node. This is the server running on the

database computer. It is responsible for receiving all the bulk patient data and writing

it into the database.

9.4 Server Node

During the redesign of the service, the server’s role was expanded to be used for not only

monitoring and remote control, but also to support bulk patient data transfers from the

rehabilitation site to the database site, and serve as an on–line directory transparently

mapping patient and therapist usernames to their network addresses. The full list of

tasks executed by a server is

1. Multicast patient data generated by the VR exercises to all the nodes in the

network;

2. Continuously measure the round trip delay between the nodes in the network;

this will be used in QoS adoptions to poor or slow Internet connections;

3. Periodically rebuild the multicast tree based on the round trip delay updates and

the new nodes arrived into the system;
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4. Store directory of connected users (patients or therapists) and perform transpar-

ent mapping between their names and their network addresses;

5. Schedule bulk patient data transfers to the database site;

6. Respond to remote commands sent by the therapist reading local configuration

file changes;

7. Communicate with the local VR simulation, sending configuration parameters to

be changed at run–time;

8. Automatically start the teleconferencing utility upon request from one of the

parties;

9. Stream patient data to a monitoring client upon request.

The monitoring service has to run in network environments belonging to hospitals,

universities, research centers, and patient’s home. In such a heterogeneous network the

system had to be designed for small data transfers to address the usually low bandwidth

of the home connections, and also be easy to integrate in the tight firewall security

provided by hospitals and some universities. The firewall issue was a serious concern in

the design of the system, considering that network administrators are rather reluctant

to grant access to a new unknown application. To make the application acceptable to

them, the severs were designed to use asynchronous communication over two sockets:

one for UDP transfers and the other for TCP transfers [9, 10]. The TCP data transfers

are necessary for critical information such as multicast tree messages, bulk data transfers

or monitoring command and requests. The UDP protocol was selected for transferring

small and fast packages of VR simulation data. Granting UDP permission through

firewalls or across virtual private networks (VPN) has proven problematic, so a quick

switching option was implemented to allow the traffic designed for UDP to be sent over

TCP sockets.

The server was designed as an inter–node communication framework with the tasks

presented above implemented as services running simultaneously in their own threads.

This approach fitted best the requirements of an expanding system that has to easily
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support extra features. Each service is instrumented with a message queue that stores

the messages arrived on the common UDP socket or the TCP sockets. Details about the

services implemented in the current version of the server are presented in Appendix C.

9.5 Message Format

The message format used by the remote monitoring system starts with a common iden-

tification and addressing header followed by message specific data. Table 9.1 presents

the message fields.

Table 9.1: Message format.
Field name Byte Length Description

Length 4 The length of the message buffer as it is sent
over the network

Type 1 ID of the message type
Flag 1 Bitwise flag settings regarding the way the

message should be handled. Supported
flags are MULTICAST and REALTIME and
STORE

Source ID 2 The ID of the node the generated the message.
This is relevant for multicast messages where
the source does not coincide with the node
that the message was received from

Destination service type 1 The type ID of the destination service.
Destination service ID 1 ID of the service on the remote node that has

to process this message
Source service type 1 Type ID of the service that sent the message
Source service ID 1 ID of the service that sent the message
Multicast tree ID 2 The ID of the multicast tree used to forward

this message
Data length 4 Length of the message specific data

The messages are exchanged between C/C++ programs on various platforms and

Java applications. Before it is sent out in the network, the message is encoded in a byte

buffer and then decoded at the destination. To insure type compatibility between the

various platforms, the values of the message fields are translated into the Java number

format before they are stored into the buffer.

Each message has been implemented as a separate class. To reduce the size of the
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code, messages with very similar data have been collapsed into a single class imple-

mentation with a subtype filed identifying it. This permits a comfortable development

and more error safety. However, encoding and decoding of messages requires memory

handling and data format translations, which cause certain delays. These operations

are not performed on messages being multicast in real–time. Instead of fully extracting

the message information into the class members, only a reduced set of values necessary

to identify the message destination and source are decoded. Messages marked by the

STORE flag are copied in the nodes data structures in their byte buffer format and

streamed to the client directly, thus saving the cost of and additional encoding/decoding

for each message.

9.6 Monitoring Client

The monitoring client has been implemented using the Java language and the Java3D

graphics library. This choice was made to take advantage of the platform independence

and in–browser access to Java applets. Offering the client as an applet is the most

convenient and accessible option, since the therapist is not required to perform any

software installation on the local machine. The monitoring client is the project devel-

oped by Lewis for his Master degree research. Lewis extended the initial simple client

and integrated it with the new monitoring service presented above [70]. This caused

problems with the original web applet approach, since the client has to create network

connection to several other computers besides the one it has be loaded from. This

conflicts with the default Java security settings. This issue was solved by switching

the implementation from Java applet to a stand–alone application. The access to the

application is still done through a web link, but the delivery is done by the Java Web

Start technology packaged with the newer versions of the Java SDK.

The monitoring client is designed to connect to the server nodes in the overlay

network and measure the round trip delay to each of them, then connect to and require

patient data streaming from the node with the fastest connection. This is necessary to

remove the client’s sluggish interactivity caused by a slow network.
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9.6.1 Rehabilitation Simulation Mock–ups

The remote monitoring client uses simplified mock–ups of the VR rehabilitation exer-

cises to give the therapist insight into patient’s activity. These simplified simulations

were designed to be as light on resources as possible because of the following reasons:

• The computer used by the therapist to access the client is rarely a high end

workstation;

• The client may at some point be run in a browser, which usually slows down the

execution;

• The therapist does not need a complete simulation since he or she only needs to

watch without interaction;

• Developing and maintaining smaller mock–ups is much easier than keeping in sink

two versions of the same software.

A mock–up of an exercise does not contain any of the underlying logic of the real

simulation. It only creates and displays the essential 3D objects and features of the

real exercise and updates their positions based on the data sent from the rehabilitation

site where the patient undergoes the therapy. For instance, the mockup of the airplane

exercise for ankle rehabilitation in sitting, displays a boxy airplane model and three

hoops head of the airplane (see Figure 9.4). Thus, the client simulation only has to

update the position and orientation of the airplane and of the next three hoops as sent

by the real simulation. The side effect of this approach the doubling the size of the

messages. However, even with this doubling, the maximum message size in the current

implementation does not go above 150 bytes.

9.6.2 Initial Street Crossing Simulation Mockup

The Java simplified version of the street crossing simulation is under development. A

preliminary version is shown in Figure 9.5. The street exercise simulation contains more

visual entities than the rest of the exercises, but not all of them need to appear in the
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Figure 9.4: Airplane exercise monitoring mockup [71].

mockup as a graphical entity, nor do they have to be represented ass realistically as

they are in the real simulation. The street crossing simulation parameters and their

presence in the monitor is presented in Table 9.2. All the 2D feedback displayed on the

screen will appear in the monitoring client as 2D feedback too.

Figure 9.5: Initial street crossing exercise monitoring mockup screen.
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Table 9.2: Message content.
Parameter Appears

in mockup
Implementation Details

Street width Yes On horizontal rectangle will be displayed for each
street lane and sidewalk

Curb height Yes The elevation of the sidewalk will be changed in ac-
cordance with the curb height

Sidewalk edge
shape

Yes If the sidewalk edge is sloped the portion of the side-
walk corresponding to the crossing will be tilted

Crossing type Yes The crossing will be displayed either as a zebra or as
two parallel lines

Surface
patches

No The patches will not be displayed since they contain
numerous vertices and will slow down the client and
the communication. Instead, the type of the patches
will be transmitted and the walking surface will be
displayed in an appropriate color. When the user
steps on a patch of special surface, the foot in the
monitoring client will be highlighted.

Vehicles Yes Only two four vehicles will be displayed using simpli-
fied boxy 3D models. They will be the vehicles closest
to the crossing on the current lane and the next lane.

Stop–light
color

Yes

Sounds No
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Chapter 10

Data Storage and Access

The design of the Multiplexed Telerehabilitation System relies on a central high–end

server for data storage. Besides collecting the data, the server site also provides a web

application for data access to be used by the physicians and therapist involved. The

application was designed to support four different rehabilitation projects involving ex-

ercises for the rehabilitation of hand, ankle and gait. The similarities of the therapeutic

procedures have been identified and the implementation easily supports extensions for

new rehabilitation projects. The design is split over three tiers.

1. The back tier consists of an Oracle database server that stores the data collected

by the VR exercises during the rehabilitation sessions;

2. The middle tier consists of Java servlets that mainly interpret the requests of the

user and return his or her data in the desired format;

3. The front tier is designed to simplify the construction of the data requests to

be sent to the server. It currently has two implementations: a simple HTML

implementation that provides access to predefined requests, and a Java applet

that brings full flexibility for data selection.

10.1 Data Entities

The data collected by the rehabilitation exercises are stored in files in a hierarchical

structure reflecting the flow of the therapy. Each patient can participate in one or

more rehabilitation projects, over the period of one or more studies. The projects are

necessary to separate the data based on the type of therapy, exercises and hardware

employed. The studies provide data separation with respect to time, grouping patients

over time–periods.
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For a certain project, a patient goes through a sequence of therapy sessions, sched-

uled usually either daily or three times a week. For certain situations, a patient may

have to go through multiple sessions in a day.

Each rehabilitation session consists of a series of exercises provided by the system,

and executed in the order decided by the therapist or physician. An instance of such

an exercises is called trial. Depending on the exercises, the length of such a trial can

vary significantly between 30 seconds and 15–20 minutes. Regardless of the length of

a trial, the patient executes a sufficiently large number of trials to last for an hour or

more of therapy.

In the case of the short trials, a single instance did not give much information so it

was necessary to view such trials in contiguous groups called blocks. The structure of

a session is presented in Figure 10.1.

Figure 10.1: The structure of one session.

For each trial, the system collects data in real time and stores them in files. These

data are called “raw data” and they are the great majority of the data stored by the

system. Besides raw data, the system also stores the configuration of the exercises

and the performances recorded during the session. The performances are calculated in

relation with numerical targets set by the therapist, which are also stored.
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10.1.1 Data Size

The system collects raw data with a frequency of 50 Hz. Since raw data are the vast

majority of all the data stored, the rest of the data will be ignored for estimating the

size of the data.

The size of a raw data record varies between projects. For instance, the hand

rehabilitation projects store the angles of the finger joints and the position and forces

applied by the fingertip. The ankle exercises store the 6DOF position and forces of the

ankle. The gait exercise stores the 6DOF position and forces of each foot, in both real

and the virtual environments. On average, the size of a record is of 20 floating point

numbers.

Considering the length of a session to be on average one hour, and the percentage

of time during which the patient exercises to be 60%, the size of the data collected for

one session is approximately 8.2 MB. With a session count between 12 and 20, the size

of the data stored for a patient during a therapy study is between 98 MB and 164 MB.

10.2 The Back Tier: Oracle Database

Although modern tiered application usually solve the authentication and permissions in

the middle tier, in this case it was proven more efficient to use the features offered by the

Oracle server instead of reinventing the wheel and implementing a whole new security

scheme. The data access is controlled based on the roles assigned to each user and the

user’s association with each study. While for access based on the user privileges, Oracle

provided the roles implementation, the later type of access control required row–based

data access separation, which was implemented manually using database views and

synonyms.

The database was design to reflect the structure of a therapy session. The tables

are organized on a four hierarchical levels: session tables, block tables, trial tables, and

raw data tables. Optimizations for fast access were implemented by storing raw data

evaluations in separate tables and propagating foreign keys down through the table

hierarchy. The architecture also provides tables for data filter storage designed support
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comprehensive data selection for filtering purposes as well as fast access to filtered and

unfiltered data. Details on the database design are presented in Appendix D.

10.3 The Middle Tier: Java Servlets

The middle tier makes the connection between the database and the end–user interface.

The main activity of the middle tier is to upload to the user the data requested as charts

(images), or as plain numbers in spreadsheet, text, or HTML format.

A data request is usually defined by a large number of parameters specifying the

patient, the exercise, the body part, the time interval, and specific exercises parameters.

During the prototype phase, the portal had to provide the researchers full accessibility

to all the possible options in a concise manner.

The data requests coming from the user are encoded in a hierarchical text format

that is decoded by the middle tier and transformed into graphs or other data formats.

Although XML is the preferred choice when dealing with hierarchical data, it is too

verbose for the purposes of this project and slow to parse. The developed format is

inspired from XML, using as delimiters curly brackets instead of tags. The format does

not implement the equivalent of the XML attributes.

A data request is organized in multiple hierarchical entities, each of which consists

of a set of general parameters, a set of module specific parameters (i.e. exercise depen-

dent), and a list of child entities. Figure 10.2 shows the structure of a list of requests

that is sent to the middle tier by the user.

Figure 10.2: Data request list.
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10.3.1 Data Request Structure

There are two major types of data requests: performance history request, or raw data

requests. The processing required for each of these two types differs significantly. The

raw data graphs need to show the data and mark on the graph the position of the

events that occurred during the trial (see Figure 10.3). Besides the type of the request,

the general parameters include information about the size and density of the graphs to

be generated. This information is ignored if the return type is a plain data one. The

density of the graphs specifies the maximum number of data points to be shown per

pixel of image width. In case there is too much data, more than one graph will be

generated for one request, by splitting the data and hence making the charts easy to

read.

Figure 10.3: Airplane exercise raw data.

There is only one module specific parameter in the structure of the data request. It

is used for performance history graphs to specify whether the X–axis should be a scaled
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timeline or just show the data points equidistantly ignoring the actual time values. The

former format gives a better view of the therapy sequence over time, while the latter

allows easier comparison between data points.

The last part of a request is a list of union query specifications. From these speci-

fications, the servlets will generate the database queries necessary to retrieve the data

and create the charts.

10.3.2 Union Query Structure

The union query part of a request was introduced only in newer versions of the portal.

An SQL union clause simply concatenates the results of two or more regular select

queries. The use of such queries became necessary when the ankle project was added

a second exercise very similar with the initial one. The two exercises had enough

differences to justify different table storage but it also made sense to look at both

exercise data together. Hence, the patient history values of the two exercises were

retrieved with regular select queries and concatenated using the union clause. In the

situations where the data requested comes from only one tables, the union query will

not have an effect on the processing speed.

The only general parameter of the union queries is the username of the patient whose

data are requested. In the current stage of the system, the raw data union queries do

not need any module specific parameters. The performance history union queries use

six parameters:

1. Data grouping level - Allows grouping the data across days or keeping it at trial

level;

2. Data grouping function - If the data are to be grouped, this parameter specifies

how it is grouped. The supported options are: summation, average, minimum

and maximum;

3. Starting date - Extract data only newer than the given date;

4. Ending date - Extract only data older than the given date;
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5. Visible data aspects - For each data column extracted, the portal can display in a

graph the data itself and the unfiltered version of the data. In addition, the data

points can be added the values of the standard deviation resulted from grouping.

The last feature that can be displayed is the a fitting line calculated with the least

squares method (linear regression);

6. Chart type - Selects whether the chart should be a line chart, scattered plot, or

bar graph.

The last parameter of the union query is the list of select queries. The select

queries will be used to generate single table queries that will be concatenated under the

UNION clause. All the select queries specified for a union query must have the same

number of columns selected and the columns must match types across the select queries.

Figures 10.4, 10.5, 10.6, 10.7, 10.8 show a few examples of data graphs generated by

the portal.

10.3.3 Select Query Structure

The select queries take as general parameter the exercises name. This is used to identify

the table from which to extract the data. For convenience, multiple exercises can be

specified, and the portal will split the given select query in multiple sub–queries that

will eventually be concatenated by the union clause.

For the raw data queries, the module specific parameter is the trial ID. The perfor-

mance history queries several parameters necessary to provide the therapist with the

flexibility needed to see all the aspects of the data. The first group of parameters is

used to describe the data to be selected. These parameters include information about

the limb side to be graphed, and value ranges of exercise specific settings.

The last of the parameters is the name of the filter to be used when retrieving the

data. The filter name will be correlated with the requested data, and the data selection

parameters to find the ID of the filter in the FLTS table.

The general and common parameters of the select query are followed by a list of

column names to be retrieved from the database table. These names are not necessarily
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Figure 10.4: Finger velocity exercise raw data.

matching the exact database names. They are implemented as aliases that are matched

in an external dictionary with an SQL expression. Using this feature, the data stored

in ISO units can be transparently converted into units more familiar to the therapist

(e.g. degrees instead of radians).

10.4 The Front Tier: User Interface

The front tier of the web portal has been designed to provide the therapist with an

easy and intuitive way of browsing the data collected during the rehabilitation sessions.

There are two versions of the web portal: a non–interactive HTML–based implementa-

tion and a flexible more interactive version implemented as a Java applet.
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Figure 10.5: Ankle exercises patient history data. The graphed parameter is the
PITCH–UP angle. The X–axis is formatted as a time line, and the data are grouped
by days.

10.4.1 HTML–based Interface

The HTML interface has been developed as an easy to modify interface that required

less development time and provides immediate access to the data stored by new systems

added to the telerehabilitation framework. The web page is split in two frames (see

Figure 10.9). The left hand side frame displays a list of studies and the subject that

was part of them. Upon clicking one of the patients, the right hand side frame displays

a history of the patient’s activity. The history is grouped by days, session and blocks.

Each block displays a list of its trials with details about the trial configuration and

links that generate raw data graphs (see Figure 10.10).

The performance history access is done through links to predefined graph configura-

tions, letting the user choose the body side, data grouping level and the filter coefficient

to be used when selecting the data from the database tables (see Figure 10.11).
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Figure 10.6: Ankle exercises patient history data. The graphed parameter is the
PITCH–UP angle. The X–axis is formatted as an equidistant sequence of points. The
data are grouped by days.

10.4.2 Java–based Interface

While the HTML interface provides the therapist with predefined graph choices, the

Java implementation allows the therapist to build customized graphs through an inter-

face that translates the user selections in data request format.

For raw data graphs, the interface uses drop down lists to select the study, patient,

session block and trial to be graphed. A checkbox list is displayed for selecting the body

part performance to be displayed. This list is customized for each exercise separately

(see Figure 10.12).

The performance history interface provides the user with a larger number of options.

Once the study, the patient, and the body side are selected, the therapist has to decide

which exercises to look at, what variables of the exercises to consider, over what length

of time to group the data and what function to use for that. This is a large number of

choices that could become confusing and lead to errors. Furthermore, all these selection

are part of the “Basic” configuration tab (Figure 10.13). The advanced configuration

tab (Figure 10.14) brings choices like time interval, filtering, and exercise dependent
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Figure 10.7: Ankle exercises patient history data. The graphed parameter is the
PITCH–UP angle. The X–axis is formatted as a time line. Data graphs individual
trials.

parameters.

To simplify this process, it was necessary to define default values for the majority of

the parameters so that the selection of three or four parameters generated a most likely

needed configuration. This was done using a text dictionary format that stored config-

uration possibilities. Searching this dictionary by a few of the parameter values yields

a predefined configuration that is guaranteed to offer proper results. Of course, these

predefined selections can be modified, but it is necessary to have a valid configuration

in place to avoid empty data responses.
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Figure 10.8: Ankle exercises patient history data. The graphed parameter is the
PITCH–UP angle. The X–axis is formatted as a sequence of equidistant points. Data
graphs individual trials.

Figure 10.9: HTML portal. Hand exercises.



157

Figure 10.10: HTML portal. Ankle exercises.

Figure 10.11: HTML portal. Performance history graphs links.
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Figure 10.12: Java portal. Raw data selection interface.

Figure 10.13: Java portal. Performance history basic data selection interface.
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Figure 10.14: Java portal. Performance history advanced data selection interface.
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Chapter 11

Conclusions and Future Work

11.1 Conclusions

The work presented in this thesis is a mobility simulator using two compact size Stewart

platform robots. A virtual reality simulation of a street crossing has been developed

and integrated with the simulator to be used as novel means for gait rehabilitation in

patients post–stroke. A telerehabilitation framework has been designed and developed

to integrate the Mobility Simulator along with other existing projects for hand [100, 12]

and ankle rehabilitation [16]. The framework integrates the projects, with database

storage of the collected clinical data, web portal to the database for post therapy data

analysis. A monitoring service that allows monitoring and control of the rehabilitation

session to be done by a remote therapist is under development.

11.1.1 Mobility Simulator

The proposed Mobility Simulator was designed to use two pneumatic Stewart platform

robotic devices developed at Rutgers and attached to the user’s feet. This design fits

into the “foot platform walking devices” category defined by Hollerbach in [51]. The

two Rutgers Mega–Ankle (RMA) robots are connected to and controlled by a prototype

haptic control interface (HCI) containing an embedded Pentium board and customized

electronics and pneumatics for air pressure control.

Servo control software has been developed to control the position and forces applied

by two RMA robots that are simultaneously connected to the interface and active. The

controller uses an adaptive PD strategy for position control and a PD strategy in the

PWM air pressure control loop. The controller has been tuned to insure stability and

position and force accuracy tests have been conducted.

A nine state walking simulation algorithm has been developed on top of the con-

troller. The algorithm is designed to handle the switch between two major functioning
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modes of the RMA robots. The fist mode requires one of the platforms to resist external

disturbances during the stance phase of gait (i.e. when one foot supports the weight

of the body). The second mode is the free motion mode used for the swinging foot.

In this mode, the RMA robot is compensating for its own weight and for the forces

applied by the user’s foot, allowing it to move freely.

11.1.2 VR Rehabilitation Exercises

A virtual reality simulation of a street crossing has been developed and integrated with

the Mobility Simulator (the street crossing exercise has been designed to train patients

post–stroke in a frequent and challenging activities of daily living). Reaching the other

side of the street in time is often a difficult task for a stroke survivor who has to focus

on walking while coping with the distractions of a busy street. The simulation features

intelligent vehicles that can be configured to act more or less aggressively by blowing the

horns and encroaching on the crossing while stopped at the red light. Furthermore, the

street surface can have patches of special haptic materials simulating ice, mud or gravel.

All these parameters can be reconfigured by the therapist, and some can be changed

during the run–time to adjust the exercise difficulty to the patient’s performance level.

A second exercise has been developed by Kourtev [15] for the mobility simulator for

training walking in general. The exercise displays a park scene in front of the patient.

The patient is required to walk on the path and cope with various obstacles placed in

front of him by the simulation. The shape of the path can be configured as well as the

frequency and difficulty of the obstacles.

11.1.3 Haptic Rendering

A novel approach to rendering of ground haptic surfaces has been developed and imple-

mented for the Mobility Simulator. The concepts of haptic patch and haptic material

have been developed using as inspiration the already existing graphical materials and

textures. The haptic materials describe the haptic properties of a surface in terms of

stiffness, damping, breaking point, and friction. New materials can be obtained by

blending several basic haptic materials using either the default linear transformation or
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a different function of choice.

The haptic materials are applied on the ground surface in patches defined by a

polygonal shape projected on the virtual ground surface. Two types of patches have

been designed. Lining patches apply the material to the surface itself similar to how

snow covers the ground. Filling patches are used to fill in cavities and create puddles

of material.

11.1.4 Data Storage and Web Portal

A data storage and web–access framework has been developed to unify the analysis of

the clinical data collected by four VR–based rehabilitation projects for hand, ankle and

knee. The framework uses the Oracle RDBMS server for data storage and Java servlets

and applets for web–based consultation and analysis of patients’ data.

11.1.5 Remote Monitoring Service

A monitoring service has been designed, implemented and partially integrated with

the existing VR rehabilitation projects. The service provides a geographically remote

therapist to monitor and control a therapy session. The monitoring service features an

overlay network of server nodes running on various sites. A VR exercise connects to

such a server running on the local machine and streams the collected data to it. The

server, multicasts the received data through the overlay network to the rest of the nodes.

A remote therapist will connect to the network of nodes using a Java client, request

the list of on–line patients, and visualize the activity of one or more chosen patients

through mockups of the VR exercise run on the rehabilitation site. The mockup is kept

in sync with the on–going VR simulation through a stream of data packets multicast

from the rehabilitation site through the network of nodes.

11.1.6 Thesis Contributions

This thesis makes contributions in the following fields: haptic devices, virtual environ-

ments, haptic modeling, virtual rehabilitation, and telerehabilitation. The list below

summarizes these contributions by field.
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1. Haptic devices: Dual Stewart platform mobility simulator;

2. Robotic control : Simultaneous dual robot control in time–sharing control loops;

3. Virtual environments: Street crossing simulation integrated with the mobility

simulator for rehabilitation of patients post–stroke;

4. Haptic modeling : Simulation of a person walking using two Rutgers Mega–Ankle

robots;

5. Telerehabilitation support : Distributed telerehabilitation communication frame-

work, including web–based data access.

11.2 Future Work

11.2.1 Mobility Simulator

The validation tests of the Mobility Simulator confirmed the initial expectation that the

system can be used to simulate walking with small steps. It would be beneficial if the

simulator supported the full stepping range of a person. Such a feature combined with

the flexibility offered by the 6DOF RMA robots has the potential to greatly improve

the rehabilitation therapy.

It is known that the workspace size of a Stewart platform robot is in direct relation-

ship with the size of the fixed and mobile bases, as well as the stroke of the actuators.

In order to achieve a workspace that could accommodate a full human step, the RMA

robots would have to have a lower base about five time larger in diameter than they

currently have and actuators with the same proportion larger stroke. Such an approach

would make the system unusable given the lateral distance between the feet, as dis-

cussed in section 3.1.2. A simpler and less costly way of increasing the back–front size

of the simulator’s workspace is to place each RMA robot on a rail. This could be done

by mounting low friction casters under the fixed base of the robot and attaching to the

base a linear actuator with the fixed end attached to the wall (see Figure 11.1). The

new actuator would move the RMA robot towards the front of the rail during the swing

phase of the gait and backward during the stance. In this approach, the RMA robot
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would only be used for rendering haptic effects and forces without having to slide the

foot during stance. This would allow the foot to stay in the center of the workspace and

hence have sufficient rotational freedom of motion at the beginning and of the swing.

Figure 11.1: Extending the front–back workspace of the RMA platform by placing it
on casters.

Another improvement that could be implemented is the use of larger diameter ac-

tuators and valves. Larger diameter actuators would increase the power output of the

platform while the larger diameter valves would increase the air pressure control band-

width as well as the mechanical bandwidth. At the time of this writing, the author is

not aware of any commercially available frictionless pneumatic actuators larger than

the actuators currently used by the RMA.

The same applies to the solenoid valves. Although there are large diameter pneu-

matic valves, they do not have a high enough ON/OFF frequency, which makes them

unsuitable for our controller. A workaround this situation would be to double the

number of valves in the controller interface from twenty–four pairs of intake/exhaust

micro–valves to forty–eight. This would double the number of valves per air channel

to two intake and two exhaust valves. Such a change would also require the increase of

the main air input tubing so that the system is provided sufficient airflow.

11.2.2 VR Simulations and Haptic Rendering

The VR simulations developed for the Mobility Simulator could be improved by adding

intelligent human avatars to the scene. In real life, crossing a street is often done in the

company of other pedestrians. This raises new accommodation problems to the patient

post–stroke who now has to also watch for the dynamic obstacles that are pedestrians.

Besides just adding avatars that cross the street along with the patient, these entities
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could be added intelligent behavior and allow them to interact with the patient, assisting

him or distracting him. For instance, one avatar could be programmed to cross the

street at the same time with the patient but stay a few steps ahead of him. This avatar

would walk at a speed that insures reaching the other sidewalk in time, thus pacing the

patient and helping him walk in the necessary rhythm. Avatars can also be distracting

on purpose by cutting off the patient’s line of sight. On a higher level that requires

the use of speech synthesizing software, the avatars could talk with each other and to

the patient based on an AI routine embedded in the simulation. For instance, calling

the patient name while the patient is in the middle of the street would constitute a

serious distraction that would cause the patient to stop and look for the caller. Such a

situation could prove dangerous in real life, while training for it in VR system would

pose no hazards.

The ability of the Mobility Simulator for rendering stairs and small step walking

could be used to integrate it with walking inside a house. The simulation would require

the patient to go around the furniture and up and down the stairs to the second floor

or basement.

11.2.3 Remote Monitoring Service

The monitoring service has been developed to solve one specific problem: provide the

therapist with a reasonable interactivity that is not affected by the slow or unstable

network between him and the patient. This work has been done to serve as foundation

for further improvements some of which are already under development by Lewis.

One important improvement is integrating audio and video feeds between the ther-

apist and patient with our current remote access implementation. This extension is

currently under development and the system has been instrumented with a Java based

conferencing tool that uses the overlay network to identify the conferencing parties and

connect them.

Further work can also be done in improving the adaptability of the service to slow

and unstable network connections. The current implementation provides this features

at a reduced scale that relies on the small scale of the system. However, given the fast



166

developments in mobile computing, the monitoring service can be adapted to function

on handheld devices, the technology for such a transfer already existing. Bringing mo-

bile PDAs into the framework will require a more scalable algorithm for adapting to

the network environment to provide satisfying quality of service (QoS) to the therapist.

Bandwidth evaluation can be added to the service and used along with the round trip

delay and jitter measurements to adjust the data streamed by the node local to the

rehabilitation session. The data can be organized on hierarchical levels of real–time

requirements. If the network conditions worsen, the less stringent data such as instan-

taneous patient performance can be sent with lower frequencies. For this purpose, the

message format is being redesigned to support partial data transmission with minimal

decoding overhead.

The entire remote monitoring console for the mobility simulator has to be developed

and integrated with the existing hand and ankle in sitting application.

11.2.4 Patient Trials

Currently, the Mobility Simulator has been tested only on healthy individuals. Further

studies on post–stroke and other patient populations are necessary. These tests will

yield valuable data on the validity, ease of use, and medical efficacy of the system that

will lead to further hardware and software improvements.
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Appendix A

Servo Controller Software

A.1 Hardware API

The main goal of the hardware API was to hide from the control and simulation algo-

rithms the usually cumbersome details necessary to write or read a signal from a port.

The hardware entities modeled in software are presented below.

A.1.1 Port

A port is a pair of a memory addresses and a byte value. Although the operations for

writing or reading ports are simple, in our case, multiple devices are controlled or read

through the same port. This made it necessary to always store the value of the port in

a variable, so that when sending a command through only a few bits of the port byte,

the rest of the devices will receive the signal they already have, hence not changing

their state.

A.1.2 Channel

A channel is the equivalent of an electrical wire. It is used to send commands to a

hardware entity or to read the value of a hardware entity. A channel has attached a

number of ports and a mask defining which bits of those ports are to be used by the

channel. The value of the channel, its sign and bit resolution are also stored.

The channel structure is very useful for modeling a more complex aspect of reading

the sensors through the A/D converter. The A/D I/O boards used in the controller

interface can convert 16 channels but allow only two to be read at a time. This is

accomplished with two selectors. Each selector must first be given the ID of the chan-

nel to be converted, then the software has to wait for the conversion to be completed

reading a confirmation bit, and only after that read the value resulted from the con-

version. To implement this procedure, the selector and confirmation bits have been
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also implemented as channels, and the channel structure was added references to such

corresponding entities. If a channel does not need to use a selector and a confirmation

channel, then these references are set to NULL. In addition to the selector and confir-

mation channel references, the regular channel also stores the selection and expected

confirmation values.

This data structure along with the read and write functions simplified significantly

the A/D I/O operations by reducing them to single function calls (implemented as C

macros for speed) that hide all the details presented above. Even more, using the C lan-

guage definition upon declaration syntax, the hardware specifications were implemented

in a tabular form that is very easy to follow and adjust.

A.1.3 Sensors and Valves

Using the channel structure, the modeling of sensors was done by attaching a channel, a

value and a transform polynomial to each sensor entity. The value of a sensor would be

calculated by applying the transform polynomial to the value of the channel attached

to the sensor.

The solenoid valves were also modeled using the channel structure. A valve is

defined by a reference to the channel that controls it and by a state variable and a

counter variable marking the time that the valve has to be kept open.

A.1.4 Air Channel

An air channel is the software model of the air hose/cylinder chamber assembly. It is

an entity used for pressure control, hence its implementation is more complex. An air

channel is defined by an intake and exhaust valve, a pressure sensor, and the necessary

pressure control coefficients. Each air channel had its own independent control variable

to provide full configuration flexibility. Such a detailed implementation was necessary

to address the differences in hardware caused by extended use.
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A.1.5 Double–Acting Cylinders

Using the structures defined above, the double acting cylinder structure was defined by

putting together two air channels, one for the lower chamber and one for the upper,

along with a linear potentiometer sensor and the position and force control coefficients.

Again, each cylinder was assigned independent coefficients for maximum flexibility.

The double acting cylinder was applicable for both the regular and the Mega ankle

robot. For the control of a haptic glove, a similar but simpler structure would have to

be defined to model a single acting cylinder.

A.1.6 Stewart Platform

The Stewart platform structure puts together all the structures defined above. It con-

sists of six double acting cylinder structure references, one force sensor reference, and

all the kinematic parameters of the robot. Both models of the Rutgers Ankle robot use

the same structure since they differ only in size.

A.1.7 Configuration Files

The core of the hardware API is the channel structure. Using it, rearranging the

software to follow the hardware switch configurations can be done by just reassigning

channels to sensor and valve entities as necessary. Due to initial hardware failures, it

was necessary to be able to easily rewire an unused pressure sensor to an air channel

whose sensor was faulty, and change the software to handle it.

To avoid having to change the software so often and lose track of what was working

and what was not, a configuration file format was implemented to store as many of the

settings as possible outside the source code. A configuration file has a simple format of

parameter = value.

The configuration files make it very easy to add new devices to the system by just

adding a new file storing that device’s parameters. For instance, each Stewart plat-

form comes with such a configuration file storing the kinematic parameters, inertia
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tensors, cylinder control gains, force sensor transformation matrix for converting elec-

trical signals to forces, and torques, and signal filter coefficients. Similarly, each control

box has its own configuration file specifying the hardware addresses and connections

(in case they have been modified), pressure sensor filter coefficients, and control loop

frequencies.

A.2 Controller Commands

To increase the interactivity of the software and the modularity of the implementation,

it was necessary to design it as a simple command line interpreter. While not having all

the special features a regular operating system interpreter comes with, the controller

allowed a strict but easily extensible set of commands. Each command was used to

implement testing or simulation procedures as needed without affecting the rest of

the code. The complexity of the commands ranged from simple ON/OFF signals to

the valves to more complex visual interfaces for full hardware testing or on–screen

oscilloscopes for watching the control signals. A few of the most used commands are

presented below.

A.2.1 Hardware Test

The hardware testing command was implemented for low level hardware debugging by

the company that manufactured the prototype following the Rutgers design (Delaware

Technologies, Mount Laurel, NJ). The command presented a full view of the hardware

status and allows the manipulation of valves and hardware switches, while showing the

voltages read from the sensors (Figure A.1).

A.2.2 Pressure Control Tuning

The pressure control tuning command allows the change of control coefficients at run–

time while showing the desired and measured pressure in cylinder chambers using a

software oscilloscope. The command supports either manual signal manipulation or
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Figure A.1: Hardware test interface.

it can output sinusoid, square or triangular waves of a specified frequency and ampli-

tude (Figure A.2).

A.2.3 Cylinder Position Control Tuning

Similar to the pressure control command the position control command, allows run–time

control coefficient changes while showing the desired and measured displacement. For

better insight into the functioning of the controller, the desired and measured pressures

in the cylinders chambers are also graphed (Figure A.3).

A.2.4 Full Platform Testing

Although the two commands presented above were sufficient to achieve a reasonable

tune–up, for more complex platform behaviors, it was necessary to watch simultaneously

any number of system values, and allow changes to each parameter individually. This

was achieved by displaying a list of the graph–able values, and allow the adjustment

of scaling and offset coefficients necessary to make the values visible in comparison

with the other lines being graphed (Figure A.4). Given the very large number of

parameters involved, a set of global parameters was defined whose change would cause

their respective individual parameters to take the same value. For instance, instead

of changing all the pressure proportional gains separately, it was sufficient to properly
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Figure A.2: Pressure control tuning interface.

configure the global pressure gain. After the global gain was set, fine–tuning was also

possible by changing each gain individually.

A.2.5 Simulation Commands

The gait simulation or the sitting system platform behaviors were implemented as

separate commands. Hence, to use the system with one or another it was sufficient to

start the controller and issue the appropriate command. In a future version, this will

be done transparently by the VR simulation, without being necessary to actually type

in the command at the controller terminal.

A.2.6 Utility Commands

Sixty–seven commands have been implemented during the development process. Among

these, approximately 60 are used for testing and configuring the hardware. The most

used commands are: valve individual manipulation, forward kinematics testing, pres-

sure sensors calibration, hardware switch state changes, serial communication testing,
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Figure A.3: Cylinder position control tuning interface.

Stewart platform position specification, timer accuracy testing, and a usage manual

command. The Stewart platform orientation command is used to specify the position

of the platforms (see 3.12), so that the reference axes were accordingly modified.
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Figure A.4: Full platform testing interface.
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Appendix B

Hand and Ankle VR Exercises

B.1 Post–Stroke Hand Rehabilitation Exercises

The post–stroke hand rehabilitation set of exercises has been design to improve the

control over the fingers by repeating two basic movements under various conditions.

The exercises were done using a CyberGlove (Immersion Co.) or a Rutgers Master II

Haptic Glove. All the exercises were to be executed in a discrete manner, each motion

constituting a trial. This was necessary for easier post–therapy analysis of the data.

The discrete aspect of the exercises required a game–like situation that engaged the

patient and lasted no longer than approximately 30 seconds at a time.

The first exercise targeted the range of motion of the fingers. The patient was asked

to open the hand fully and then close it completely. The simulation presented the user

with a virtual hand whose finger motion was mapped to the patient’s hand motion.

As the fingers covered a larger range of motion, a picture covered by vertical strips of

“dirty pixels” was cleared. The vertical screen zones were moved away proportionally

with the ratio of the targeted range that the patient achieved (Figure B.1) [1, 2]. The

pictures were chosen from a large selection of interesting images.

Figure B.1: Finger range exercise [1, 2].
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The second exercise asked the patient to close the fingers as fast as possible. The

game showed the virtual hand with a virtual butterfly flying in circles above it (Fig-

ure B.2). If the patient moved the fingers fast enough to achieve the desired velocity

target, the butterfly was programmed to fly away, as if scared by the fingers. Other-

wise, it would ignore the user’s motion and continue its circular flying pattern. This

exercise proved to be very engaging, the subjects getting quite involved into hushing

away the virtual butterfly. A subtle aspect of this exercise is the connection between

the performance and the goal of the game. The idea of actually catching the butterfly

is actually the first that comes to mind when seeing the exercise. However, implement-

ing a realistic catch requires the detection of the patient’s fingers end of motion. Such

detection was tried in the initial phase of the system, but proven unreliable due to the

atypical motions of the affected fingers.

Figure B.2: Finger velocity exercise [1, 2].

The third exercise required to patient to move each finger independent of the others.

This motion resembled somewhat playing a piano, so the simulation was designed to

present the hand above a miniature piano keyboard. A good motion was causing

the pressed virtual key to play the appropriate sound and turn green. An incorrect

movement, involving several fingers at a time, caused the piano keys corresponding to

the non–active fingers to turn red. Figure B.3 presents a screen capture of the exercise.

The last exercise trained the patient’s finger endurance (mechanical force output).
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Figure B.3: Finger fractionation exercise [1, 2].

The exercise was similar with the range of motion exercise, except it was done against

forces. The force to the fingers (only four of them: thumb, index, middle and ring)

was provided by the RMII–ND haptic Glove developed at Rutgers. The reduced range

of motion offered by the glove and the difficulty of the exercise, did not allow for too

much flexibility in the design of the game. The chosen game shoed a virtual replica

of the Rutgers Master glove on the virtual hand, with the pistons filling with color as

the real pistons were being closed against a constant force (Figure B.4). Since force

was constant, it was easy to compute the mechanical work performed by each finger,

something not available in traditional rehabilitation devices.

Figure B.4: Finger strength exercise [1, 2].
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All hand exercises displayed a numerical performance feedback updated in real time

at the top of the screen. The numbers showed the desired target in red and the patient’s

performance in green.

B.2 Post–Stroke Ankle Rehabilitation Exercises

The ankle exercises were designed to improve the ankle function through repeated

pitch and roll motions against controlled resistance. The haptic device involved was

the Rutgers Ankle robot [14], a smaller version of the robots used by the mobility

simulator. Latonio, Burdea and Deutsch developed an initial airplane piloting VR

simulation exercise controlled by the orientation of the user’s ankle, while the patient

was in sitting. The Rutgers Ankle robot was used as a foot joystick, and its orientation

was mapped to a virtual airplane flying at constant speed through the virtual scene.

The patients were engaged into flexing the ankle, by asking them to fly the airplane

through hoops placed in the path of the airplane (Figure B.5). The displacement of

the hoop from the straight path required the patient to orient the airplane toward

it by flexing the ankle. The speed of the airplane, the placement, of the hoops and

the duration of the flight were controlled to vary the exercise difficulty. Later, Boian

and Deutsch developed the second version of the exercise adding haptic effects and

more flexibility in positioning the hoops in space. The haptic effects were designed

to increase the realism of the scene and make the tasks more challenging [14]. The

new hoop placement implementation was used to better customize the motions the

patient had to execute. For example, a patient that has difficulty flexing the ankle

upward would be exercising on a configuration where most of the hoops are positioned

at higher elevations than the previous ones, hence requiring the patient to execute the

dorsiflexion motion more often.

Lee [16] later developed a boat sailing exercise on a wavy sea sailing through a

sequence a buoys (Figure B.6). Although similar to the airplane exercise, the boat

simulation imposed a constraint on the path between two targets. Where the airplane

could fly between two hoops on any path, the boat had to be kept on water. This

was particularly difficult when the patient had to switch the orientation of the boat
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Figure B.5: Ankle airplane exercise [16].

on the top of a wave. This is a perfect example of how designing an exercise for a

specific task is affected by the need to keep it realistic. The difficulty of the boat

exercise is increased exclusively by the need to keep the boat behavior realistic. The

need for realism also limits configurability of the target positioning (corresponding to

the ankle motions exercised by the patient). The airplane targets can be placed in a

stair–like arrangement for ankle pitch–up training. The boat exercise does not provide

this feature because it would cause the virtual sea to look unnatural.

Figure B.6: Ankle boat exercise [16].
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Appendix C

Monitoring Server Services

The following services are implemented in the current version of the monitoring server:

dispatcher service, ping service, streaming service, registration service, command ser-

vice, database service registration service, initialization service, multicast service, and

multicast tree service.

C.1 Initialization Service

The initialization service is the first active service when the server starts. It is respon-

sible for reading the configuration parameters and starting the registering procedure.

If the server node is a hub node (its IP address and ports match the given hub IP and

port), then the initialization service only has to start the rest of the services and then

wait for the termination signal. Upon termination, the initialization stops all the other

services and exits.

C.2 Registration Service

The registration procedure allows a new node that comes alive to make itself known to

all the other active nodes in the system and create connections to all of them. Upon

activation, a non–hub node opens a socket [109] to the hub node and sends a registration

message containing information about its TCP welcome port, and UDP send and receive

ports. The hub node receives the registration message and connects back to the node

sending its own registration message. The returned registration message has appended

a list the information of all the other known nodes in the network. The connecting node

parses this list, opens sockets to all the other nodes, and sends the registration message

to them. Then it waits for the other nodes to connect back to it, hence becoming a

fully connected network.

The registration service implements the above protocol and manages the list of
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known nodes of each server. It is also responsible for clearing out the “dead” nodes

from the list. A dead node is marked by either a failure in communication or by

prolonged silence detected by the ping service.

C.3 Dispatcher Service

The dispatcher service reads the messages from the sockets, sends and posts them in

the queue of the appropriate service. If the destination service ID is not given, the

message is posted in the queue of the least–busy service that matches the specified

destination service type. The server spawns one dispatcher service for each five nodes

in the network.

The dispatcher service is sensitive to the flags of each message. If the message is

flagged by the MULTICAST flag, besides posting it in the destination’s service queue,

it also adds it to the multicast service queue to be forwarded. An exception to this

rule is the REALTIME flag, which force the dispatcher service to run the multicasting

routine itself, thus avoiding the delay of queuing the message. If the message is flagged

as STORE, it means that the data must be stored on the local node in the structures

belonging to the source node of the message. This is a generic feature of the server that

currently applies only to the patient data streamed by the VR exercises.

C.4 Ping Service

The ping service measures the round trip delay and jitter between the local node and

all the other nodes. The operation is done with configurable frequency. If a node fails

to respond to the ping message with an interval of 60 seconds, the node is marked as

“dead” and the registration service will remove it upon the next parse of the node list.

C.5 Streaming Service

The streaming service answers data requests from a monitor node. Given a patient

name, the streaming service adds it along with the requester node to the list of streaming

requests. Each node stores a structure with the newest data collected for each patient
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active in the system. For each streaming request, the service sends this with a frequency

of 30 Hz.

C.6 Command Service

The command service is responsible for servicing special requests from the monitor

client. Such requests include configuration parameter changes to the local VR simula-

tion, either off–line in the configuration files or while the simulation is running. This

service is also used for synchronizing the access to the exercise configuration files. These

files need to be protected from remote access while the exercise is running. Hence, the

service supports requests for locking and unlocking of files. The locks are only internal

to the server. The accessing clients or exercises are required to first acquire the lock

and only then proceed to reading the files.

C.7 Database Service

The database service plays a dual role depending on the node that is running on. If

the service is running on the database node, then it is responsible for receiving data

archives and storing them in the local repository, then start the database writer that

moves the information form files to the Oracle database.

If the service is running on a regular node, it schedules daily parses of the patient

data (if it exists). If there is any new data, the service stores it in an archive and sends

it to the database node.

C.8 Multicast Tree Service

The multicast tree service is activated periodically to rebuild the multicast tree based

on the latest changes in the network of servers. The multicast tree is built taking into

account the round trip delay between each pair of nodes and the bandwidth of each node.

This information is sent periodically by each node in the overlay network. Straight

forward shortest graph path algorithms do not take into account the overloading of

each node, hence causing bottlenecks in the overlay network. If the bandwidth is taken
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into consideration, then we face a known NP–hard problem that has not been solved

yet. Current approaches relay on various heuristics to approximate a result. Research

in this direction has been done among others by Brosh in [19], Bauer in [7], and Banerjee

in [6].

In our case, the system has a small footprint on the network requiring a maximum

of 56 Kbs. In the current university and clinic setups, the available network connections

offer a much higher bandwidth than that. In addition, our system is not intended to host

hundreds of nodes, but rather one or two dozen at most. Under these conditions, the

bandwidth requirement has to be addressed only to the cases for those nodes (usually

local to the rehabilitation sites) that are connected over a low bandwidth connection

such as a modem. For these cases, the system sets the low bandwidth node as a leaf

node to the closest node in terms of data transmission delay. The same node will also

server as the single child of the low bandwidth node when it acts as a data source. Once

these nodes have been assigned, the rest of the multicast tree is built using the classical

Dijkstra shortest path algorithm [31].

C.8.1 Attaching New Nodes to the Multicast Tree

Since the multicast tree service is activated only periodically, the nodes that connect to

the overlay network in between will not be included in an optimal tree. Initially these

nodes are attached children of their closest high bandwidth node. The multicast tree

of the new node is built by the node immediately after startup.

C.8.2 Pushing a New Multicast Tree

The approach taken by this implementation provides that periodically, given changes

in the overlay network, each node will push a new multicast tree whose root it is,

through to the rest of the nodes. This can potentially raise a problem if a message

multicast based on the previous tree arrives to a destination node after that tree has

been replaced. In such a case, it is possible that the message will not reach all nodes.

Given the size and dynamics of our application, such situations are rare. Furthermore,

all the multicast messages currently implemented are patient data messages. Since they
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are sent with high frequency, losing some of these messages will not be a problem. As a

partial solution to this situation, each node could cache a few versions of the multicast

tree and use it when such a message occurs.

C.9 Multicast Service

The multicast service is responsible is responsible for forwarding the messages in its

queue to the child nodes of the local node as defined by the tree rooted by the source

node of each message. As described in the previous section each node stores the mul-

ticast trees of the other nodes.
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Appendix D

Database Design

D.1 Database Users

The database supports four types of users, defined in Oracle terms by four different

roles: “root”, “staff”, “therapist” and “patient”. These roles provide table level access

control and are used to restrict the type of access each has over the patient data.

D.1.1 Root

The root role is applied to only one user that is the equivalent of the UNIX operating

system root user. The root is the administrator of the telerehabilitation database and

has full access to all the data in the system. The root user account also stores common

access data readable (with restrictions) by all users.

D.1.2 Staff

The staff user is the next more privileged role in terms of data access and administration.

In the stage of the system, staff users are usually researchers or data managers involved

in the project that might need more than read–access to the patients’ data they are

studying. A staff user has write access on the root tables concerned with the creation

of new users and their assignment studies. They also have write access on all the

patient data belonging to studies common to the accessing staff member. This access is

generally needed to fix data anomalies (e.g. mark trials invalidated by a malfunction),

filter the performance data in order to obtain more meaningful graphs, and adjust the

patient’s clinical information based on their progress. A staff user also has the ability

of creating new “therapist” and “patient” accounts.
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D.1.3 Therapist

The therapist role is designed for physicians and therapists directly involved with the

patients and the rehabilitation sessions. A therapist user is given write access to the

patients’ data limited to adding notes attached to a therapy session. They have full

read access to the patient data belonging to a common study. The therapist is given

the ability to create a new user, but that is done through a root security level stored

procedure, hence not giving them full access to a patient’s data account.

D.1.4 Patient

The patient role is the most restrictive role in the database. It is given read access only

to the common tables stored in the root schema. The patient schemas store all the data

generated during the rehabilitation sessions. In an initial version of the system, when

the data were reduced in size, the separation of the data among patient accounts was not

necessary, which made the overall database design significantly simpler. However, given

the gigabytes of data currently stored, this separation makes not only sense logically in

terms of data entities, but most importantly, it provides a performance boost.

D.2 Database Tables

In the current version of the system, only the root and patient schemas contain tables,

the staff and therapist roles being necessary exclusively for access control purposes.

D.2.1 Root Tables

The root schema contains only administrative tables storing information about the

clinical data rather then data itself. These tables contain information about the data

entities supported by the database. The entities described by the root tables are: users,

projects (modules), studies, exercises, trial run–time event types, hardware devices and

patient questionnaires.

The user information is stored in the USRS table. This table keeps track of all

the users in the telerehabilitation systems. It stores the user’s ID (not the system or
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database ID but an application specific ID), the user name and an alias. For secu-

rity purposes, no user identification information is stored in the database. Being a

prototype system, the focus is on functionality, which may leave security holes in the

implementation. Storing the patient identification on an outside medium prevents any

undesired privacy breach. In addition, the user name is chosen to reveal as little as

possible about the identity of the patient. The user name and the alias of a user are

generally identical except when the desired username overlaps with an existing database

username outside the scope of out application. In this case the user name is given a

unique value, while the alias is kept as chosen for convenience. The aliases are unique

within the web application.

The modules supported by the database are stored in the table MODS. A module

consists of a collection of data structures required to store the information generated by

a rehabilitation project. For instance, there are currently four modules in the database

each addressing a separate battery of exercises. The four modules are:

1. Post–stroke hand rehabilitation;

2. Post–surgery hand rehabilitation;

3. Post–stroke ankle rehabilitation;

4. Post–stroke gait rehabilitation.

The table stores a module ID along with a name and a description. The ID is used

as foreign key for implementing the relations between the patient session data and the

module is belongs to.

The information about the studies is stored in table STUS. A study refers to a period

of time during which a patient undergoes therapy in one or more of the modules. A

study is defined by an ID, a name, an alias, a description, a start date and an end date.

Each patient data record has a foreign key column referencing the study ID. Using this

ID the access to the data is implemented at row level. A therapist user can see only

data belonging to patients in the studies to which the therapist is associated. The alias

is a short version of the study’s name and it is provided only for convenience.
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The trial run–time event types are stored in the table EVTS. Events are used to

mark the time when the patient or the therapist executed an action, whose occurrence

is necessary for interpreting the data correctly. Examples of such events are a change in

the exercise parameters at runtime such as modifying the speed of the airplane or boat

in the ankle exercises, or switching from the hand opening phase to the actual exercise

in the case of the hand post–stroke rehabilitation exercises.

D.2.2 Patient Tables

The data stored in the patient tables can be classified into three categories: data about

the patient’s condition, data recorded during the therapy sessions on the system, and

filtering data necessary to better describe statistically the therapy data. Figure D.1

presents the patient account schema.

Figure D.1: Patient account schema.

The first data category listed above, consists of static information with regard to the

patient’s illness, the side affected, age, and other relevant information for the therapist

and physician consulting the records. These data are kept to a minimum necessary

because of privacy considerations. Because it is not too structured, this information is

stored in a single table, with a single record.

The therapy data are the largest data category in the system. The storage is orga-

nized to reflect the protocol used during the therapy. The tables are grouped in trunk



189

tables and exercise specific tables. The trunk tables are common to all the data entries

and store the common data that characterize a session, block or trial, regardless of the

exercises. The rest of the tables contain entries specific to every exercise in the system.

The trunk tables are named SESS, BLKS, TRLS, for sessions, blocks and trials

respectively. Every table contains and ID field, which is used as foreign key by the

lower level or exercises specific tables. Other common attributes are:

• START DT, END DT - the start and ending date of the entity (i.e. session block

or trial);

• CLOSED - marks whether the entity has been successfully stored in the database;

• VALID - necessary to cancel out entities that were unexpectedly terminated dur-

ing therapy;

• Foreign keys of the tables higher in the hierarchy (i.e. the TRLS table contains

references to the corresponding block, and the block contains references to the

corresponding session;

• Foreign keys relating the record to the appropriate study. This is an out of schema

relationship since the STUS table is stored in the ROOT’s schema. The reference

to the study is necessary to provide row level access control.

In addition to the entries above, the blocks table stores the ID of the exercise of

its child trials, and information about the body parts active during the block. This is

stored in bit buffer, with each bit characterizing a body part. The bit encoding is shown

in Table D.1. The body parts covered are limited to the necessities of the current phase

system. The trial entries also have this attribute describing the parts active during the

trial. The block level attribute is a logical OR operation over the attributes of the child

trials.

The trial is the lowest level entity in the trunk tables. Trials are the only entities

that have raw data tables and event tables attached to them. Given the size of these

tables sometimes it is more convenient to skip storing it until a later time. To mark
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Table D.1: Body parts bit encoding.
Bit Hand System Ankle System Gait System
0 Left hand Left ankle Left leg
1 Right hand Right ankle Right leg
2 Thumb – –
3 Index – –
4 Middle – –
5 Ring – –
6 Pinky – –

the status of this, the TRLS table provides the RAW DATA SYNC and EVTS SYNC

attributes.

The exercise specific data are stored in five types of tables: configuration tables,

target tables, performance tables, raw data tables and event tables. With the exception

of the last two, all the other categories are applied to both block and trial level. For each

exercise in the system, the database is added a set of such tables. The configuration

tables store exercise parameters not directly related to performance measurements, such

as planned trial duration, or trial difficulty level. The target tables store numerical

values directly related to the performance evaluation. For instance, the patient may

be required to achieve a certain finger flexion speed in order to succeed in a trial.

The performance tables contain the same columns as the target tables making it easy

to compare the patient performance in relation with the targets set by the therapist

manually or by the system automatically.

The raw data table stores the high frequency sampled data necessary to evaluate

the patient’s performance. All the measurements can be reproduced for these data, and

hence the rest of the tables are redundant, yet necessary for performance optimization.

The event tables store the time, type and data about the events that occur during

the trial. Such events are pauses in exercise (marked by putting the simulation in a

pause state), changes in exercise parameters, or exercise phases such as the moment a

target was achieved or failed.

The last category of patient data is the filtering data. The performance of stroke

patients can vary significantly from day to day causing either very low or very high

measurements. In order to evaluate these data, it is necessary to remove the outliers. To
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improve the data access time, the filtering is done once for all the data in a study. In the

process several filters are applied to the data and stored in the database. When accessing

the data, the user has to choose whether to retrieve filtered data and what filter to use

in that case. The filters are stored in two tables. The FLTS table stores the ID of

the filter along with a name and filter parameters. The second table, FLT TRL RELS

stores the M:N relationship between filters and trials. If a trial is eliminated by a filter,

its ID will not be paired with the filter’s ID in the FLT TRL RELS table.

D.2.3 Data Filtering

Filtering the data is a complex problem given the many configuration parameters of a

trial. When the therapist or physician analyze the data they will select trials, based on

the type of exercise, the motion done during the exercise and body part used during

the exercise. Since during a trial there can be multiple parts involved, it is possible for

a trial to be an outlier with respect to one body part performance while being normal

with respect to the rest. Hence, a filter is not only defined by a table, column and filter

numerical parameters, but also by exercise parameters that define a subset of the rows

in that table.

A filter with the same numerical parameters is stored multiple times and with dif-

ferent IDs in the FLTS table, once for each column and rows subset. Since the number

of such combinations is very large, the filters are applied only for the most common

situations, the filtering task being left for the user in the rest of the cases.

An apparently simple way to avoid this would be to filter the data dynamically upon

the user’s selection, without storing the filters statically. This approach causes incon-

sistencies when the therapist chooses to analyze the same data over various periods,

hence reducing the set to be filtered. This will cause trial common to two such time

periods to appear in one as an accepted point while in the other as an outlier.

There are two filtering algorithms used to eliminate data outliers. One keeps as

normal points, all the data lying away from the average within a certain fraction of

the standard deviation. The second algorithm uses the same standard deviation based

interval but measures it around the data median.
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D.3 Database Views

The rehabilitation database stores patient data, which is subject to very strict privacy

rules. To enforce these rules the following conventions have to be respected:

1. A patient can only access his or her own data, and the public data stored in the

ROOT schema. A patient cannot access the data of other patients;

2. A STAFF member can access only the data of the patients assigned to the studies

the STAFF member is part of;

3. A STAFF member can create a new patient user only for one of the studies that

staffer is part of;

4. A STAFF member can edit the filters on a patient’s data and can mark sessions,

blocks, or trials as valid or invalid. No other data access is allowed;

5. A member of the ADMIN group or the ROOT user has complete access to the

entire database.

The above rules require four levels of data restriction. The first level is schema

access permissions. This is implemented using the role and privilege security model

offered by the Oracle RDBMS. The next level is table access restriction. This can also

be implemented using Oracle’s privilege system.

To restrict the user access to data belonging to different studies, it is necessary

to apply row level control on the trunk tables (i.e. SESS, BLKS, TRLS). This is

implemented using views that restrict the access through a query that matches the

row’s study ID with the studies to which the accessing user belongs. Table D.2 presents

the view associated to the SESS table.

D.4 Database Synonyms

The synonyms are an Oracle RDBMS feature that allows the developer to associate a

name with a database entity. In our case, they are used to unify the naming discrep-

ancies resulted from the usage of table and views. The use of synonyms also makes
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Table D.2: SESS table view.
create or replace view v sess as

select *
from sess
where

stu id in
(select stu id
from s stu usr rels
where usr id =

(select id
from s usrs
where upper(user name) = upper(user)));

it easier to make changes to the database without having to change the other tiers by

simply changing the mapping of the synonyms to the new structures.

D.5 Data Access Speed Optimizations

When analyzing a patient, the therapists looks most of the time at a history of their

performance, and making the decisions for the next session based on this information.

A second type of data access is to the high frequency data collected during a specific

trial. Although less frequent, it is sometimes necessary to view this data in order to

better understand the manifestation of the patient’s condition. For instance, raw data

graphs can show a certain tremor in the patient’s motion, which would not be visible

otherwise.

D.5.1 Performance History Optimization

In order to speed up the retrieval of performance data, the database uses the TRL PRFS

and BLK PRFS tables. The trial level performance tables store the values of various

measurements relevant to that specific exercise. This evidently shortens the access time

considerably by skipping the calculation of these values for every request. The block

level performance tables store the average and standard deviation of the performance

of the trial belonging to each block.
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D.5.2 Raw Data Access Optimization

A raw data table can have a few hundred thousand records. Each query for the raw

data of a trial has to find all the rows containing the key of the trial and retrieve them.

In the context of generating ten or more such graphs at a time the duration of the

operation is of about 5–7 minutes, depending on the size of the raw data table. To

reduce this duration, the raw data tables were created using Oracle’s hash partitioning

feature. Each table was split in 20 partitions, hashed by the trial ID field of each row,

which is the attribute used for searching data in the raw data tables. This shortens the

access time by approximately 70%.

D.5.3 Entity Relationship Sub–queries

Almost all of the queries sent to the database contain sub–queries matching sessions with

block and trials by searching the tables after the appropriate attribute. For instance, the

query necessary to find all the trials IDs belonging to one session is shown in Table D.3.

The query has to parse both the TRLS table and the BLKS table. To reduce this

overhead, the session ID fields were added to the TRLS table too. Although redundant,

the space cost of this decision is negligible while the performance was improved by about

10%. Table D.4 shows the faster query using the redundant session ID field

Table D.3: Query for retrieving all the trials belonging to session 100.
select id
from trls
where blk id in

(select id
from blks
where ses id = 100)

Table D.4: Query for retrieving all the trials belonging to session 100, using the redun-
dant session ID field.

select id
from trls
where ses id = 100
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